排序方式: 共有21条查询结果,搜索用时 187 毫秒
1.
2.
3.
线性模型参数的稳健化有偏估计 总被引:1,自引:1,他引:0
本文讨论复共线性和粗差同时存在时线性模型的参数估计问题,基于等价权原理提出了一个稳健有偏估计类(稳健压缩估计),并且建立了稳健压缩估计的计算方法,为了满足实际问题的需要,构造了许多很有意义的稳健有偏估计,例如稳健岭估计、稳健主成分估计,稳健组合主成估计、稳健单参数主成分估计、稳健根方估计等等,最后通过一个算例表明,本文提出的稳健有偏估计具有既可克服复共线性影响又可抵抗粗差干扰的良好性质。 相似文献
4.
A stochastic restricted ridge regression estimator 总被引:1,自引:0,他引:1
M. Revan
zkale 《Journal of multivariate analysis》2009,100(8):1706-1716
Groß [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64] proposed a restricted ridge regression estimator when exact restrictions are assumed to hold. When there are stochastic linear restrictions on the parameter vector, we introduce a new estimator by combining ideas underlying the mixed and the ridge regression estimators under the assumption that the errors are not independent and identically distributed. Apart from [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64], we call this new estimator as the stochastic restricted ridge regression (SRRR) estimator. The performance of the SRRR estimator over the mixed estimator in respect of the variance and the mean square error matrices is examined. We also illustrate our findings with a numerical example. The shrinkage generalized least squares (GLS) and the stochastic restricted shrinkage GLS estimators are proposed. 相似文献
5.
6.
This paper examines the performance of several biased, Stein-like and empirical Bayes estimators for the general linear statistical model under conditions of collinearity. A new criterion for deleting principal components, based on an unbiased estimator of risk, is introduced. Using a squared error measure and Monte Carlo sampling experiments, the resulting estimator's performance is evaluated and compared with other traditional and non-traditional estimators. 相似文献
7.
8.
在石油钻井工程中,井壁坍塌的状况即井径的扩大与缩小,与地层中泥页岩的各种理化性质有关,而这些理化参数又存在于一定程度的相关性。本文利用岭回归分析数据进行了分析与处理,建立了井径扩大的数学数学模型,确定了影响井径的主要理化指标,为解决井壁坍塌提供了理论依据。 相似文献
9.
We treat with the r-k class estimation in a regression model, which includes the ordinary least squares estimator, the ordinary ridge regression estimator and the principal component regression estimator as special cases of the r-k class estimator. Many papers compared total mean square error of these estimators. Sarkar (1989, Ann. Inst. Statist. Math., 41, 717–724) asserts that the results of this comparison are still valid in a misspecified linear model. We point out some confusions of Sarkar and show additional conditions under which his assertion holds. 相似文献
10.
Nityananda Sarkar 《Annals of the Institute of Statistical Mathematics》1989,41(4):717-724
In this paper we deal with comparisons among several estimators available in situations of multicollinearity (e.g., the r-k class estimator proposed by Baye and Parker, the ordinary ridge regression (ORR) estimator, the principal components regression (PCR) estimator and also the ordinary least squares (OLS) estimator) for a misspecified linear model where misspecification is due to omission of some relevant explanatory variables. These comparisons are made in terms of the mean square error (mse) of the estimators of regression coefficients as well as of the predictor of the conditional mean of the dependent variable. It is found that under the same conditions as in the true model, the superiority of the r-k class estimator over the ORR, PCR and OLS estimators and those of the ORR and PCR estimators over the OLS estimator remain unchanged in the misspecified model. Only in the case of comparison between the ORR and PCR estimators, no definite conclusion regarding the mse dominance of one over the other in the misspecified model can be drawn. 相似文献