首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18555篇
  免费   2169篇
  国内免费   838篇
化学   1471篇
晶体学   89篇
力学   4056篇
综合类   280篇
数学   12456篇
物理学   3210篇
  2025年   61篇
  2024年   243篇
  2023年   284篇
  2022年   225篇
  2021年   297篇
  2020年   496篇
  2019年   482篇
  2018年   469篇
  2017年   502篇
  2016年   525篇
  2015年   454篇
  2014年   802篇
  2013年   1577篇
  2012年   971篇
  2011年   1056篇
  2010年   826篇
  2009年   1069篇
  2008年   1137篇
  2007年   1107篇
  2006年   1007篇
  2005年   904篇
  2004年   797篇
  2003年   770篇
  2002年   677篇
  2001年   570篇
  2000年   565篇
  1999年   491篇
  1998年   508篇
  1997年   427篇
  1996年   313篇
  1995年   237篇
  1994年   240篇
  1993年   179篇
  1992年   187篇
  1991年   144篇
  1990年   126篇
  1989年   90篇
  1988年   68篇
  1987年   69篇
  1986年   64篇
  1985年   64篇
  1984年   86篇
  1983年   52篇
  1982年   70篇
  1981年   59篇
  1980年   49篇
  1979年   38篇
  1978年   35篇
  1977年   23篇
  1976年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A finite difference/boundary integral procedure to determine the acoustic reflected pressure from a fluid-loaded bi-laminated plate is described. The bi-laminate is composed of a piezoelectric layer and an elastic layer in contact with the fluid, and is held by an acoustically hard baffle. In the numerical model, the fluid pressure at fluid/solid interface is replaced by a continuum of point sources weighted by the normal acceleration of the elastic plate, and the governing equation system is solved in the solid domain. With the normal acceleration found, the reflected pressure in the fluid is determined by an integral expression involving the Green's function. It is demonstrated that an appropriate applied voltage potential across the piezoelectric layer has the effect of cancelling either the reflected or scattered pressure of the plate at any chosen field points in the fluid. Project supported by the National Natural Science Foundation of China (No. 10172039).  相似文献   
2.
We treat here of the question of absorbing boundary conditionsfor nonlinear diffusion equations. We use the conditions designedfor the linear equation, we prove them to be well posed forthe nonlinear problem, and through numerical experiments thatthey are well suited for reaction–diffusion equations.  相似文献   
3.
A one-dimensional bulk reaction model for the oxidation of nickeltitanium is formulated, with preferential oxidation of titaniumbeing included. The modelling is directed at the better understandingof the dominant mechanisms involved in the oxidation processand their significance for the biocompatibility of the alloy.Two different regimes for the relative diffusivities of oxygenand the metals are investigated. By assuming fast bulk reactions,different asymptotic structures emerge in different parameterregimes and the resulting models take the form of moving boundaryproblems. Different profiles of nickel concentration are obtained:in particular a nickel-rich layer (observed in practice) ispresent below the oxide/metal interface for the case when oxygenand the metals diffuse at comparable rates.  相似文献   
4.
We study initial boundary value problems for linear scalar evolutionpartial differential equations, with spatial derivatives ofarbitrary order, posed on the domain {t > 0, 0 < x <L}. We show that the solution can be expressed as an integralin the complex k-plane. This integral is defined in terms ofan x-transform of the initial condition and a t-transform ofthe boundary conditions. The derivation of this integral representationrelies on the analysis of the global relation, which is an algebraicrelation defined in the complex k-plane coupling all boundaryvalues of the solution. For particular cases, such as the case of periodic boundaryconditions, or the case of boundary value problems for even-orderPDEs, it is possible to obtain directly from the global relationan alternative representation for the solution, in the formof an infinite series. We stress, however, that there existinitial boundary value problems for which the only representationis an integral which cannot be written as an infinite series.An example of such a problem is provided by the linearized versionof the KdV equation. Similarly, in general the solution of odd-orderlinear initial boundary value problems on a finite intervalcannot be expressed in terms of an infinite series.  相似文献   
5.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
A complete boundary integral formulation for compressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for wall pressure and wall skin friction of two‐dimensional compressible laminar viscous flow around airfoils are in good agreement with field numerical methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
In this paper, we study the consistency of a variant of fractionalstep Runge–Kutta methods. These methods are designed tointegrate efficiently semi-linear multidimensional parabolicproblems by means of linearly implicit time integration processes.Such time discretization procedures are also related to a splittingof the space differential operator (or the spatial discretizationof it) as a sum of ‘simpler’ linear differentialoperators and a nonlinear term.  相似文献   
8.
In this paper we formulate a theorem on the persistence of elliptic lower-dimensional invariant tori for nearly integrable analytic Hamiltonian systems under the first Melnikov condition and Rüssmann’s non-degeneracy condition, and give the measure estimates of parameters for the non-resonance conditions under Rüssmann’s non-degeneracy condition, which is essential for the proof of our result.  相似文献   
9.
This paper deals with the non-stationary incompressible Navier--Stokes equations for two-dimensional flows expressed in terms of the velocity and pressure and of the vorticity and streamfunction. The equivalence of the two formulations is demonstrated, both formally and rigorously, by virtue of a condition of compatibility between the boundary and initial values of the normal component of velocity. This condition is shown to be the only compatibility condition necessary to allow for solutions of a minimal regularity, namely H1 for the velocity, as in most current numerical schemes relying on spatial discretizations of local type.  相似文献   
10.
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite amplitude motions. The problem of a floating body has been studied on the basis of linear wave theory by many researchers. However, the finite amplitude motion under a correlated motion system has rarely been taken into account. This paper presents a numerical method for calculating the finite amplitude motion when a floating body is moored by non-linear mooring lines such as chains and cables under severe storm conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号