首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  国内免费   1篇
  完全免费   11篇
  数学   775篇
  2019年   1篇
  2018年   2篇
  2017年   14篇
  2016年   26篇
  2015年   6篇
  2014年   36篇
  2013年   41篇
  2012年   42篇
  2011年   58篇
  2010年   43篇
  2009年   67篇
  2008年   63篇
  2007年   100篇
  2006年   33篇
  2005年   35篇
  2004年   35篇
  2003年   28篇
  2002年   26篇
  2001年   23篇
  2000年   18篇
  1999年   15篇
  1998年   30篇
  1997年   9篇
  1996年   17篇
  1995年   4篇
  1993年   2篇
  1986年   1篇
排序方式: 共有775条查询结果,搜索用时 36 毫秒
1.
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.  相似文献
2.
遗传算法基础理论研究的新近发展   总被引:27,自引:0,他引:27  
本文综述了有关遗传算法收敛性及收敛速度估计的近期研究结果,在分类概述相关的Vose-Liepins模型、Markov链模型、公理化模型、连续(积分算子)模型及收敛速度估计、迭代次数估计与时间复杂性估计的基础上,指出遗传算法理论研究存在的其它亟待解决的问题。  相似文献
3.
A comparative study of Artificial Bee Colony algorithm   总被引:26,自引:0,他引:26  
Artificial Bee Colony (ABC) algorithm is one of the most recently introduced swarm-based algorithms. ABC simulates the intelligent foraging behaviour of a honeybee swarm. In this work, ABC is used for optimizing a large set of numerical test functions and the results produced by ABC algorithm are compared with the results obtained by genetic algorithm, particle swarm optimization algorithm, differential evolution algorithm and evolution strategies. Results show that the performance of the ABC is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters.  相似文献
4.
遗传算法BP神经网络的预报研究和应用   总被引:24,自引:1,他引:23  
针对目前 BP神经网络在实际气象预报应用中 ,网络结构难以确定以及网络极易陷入局部解问题 ,用遗传算法优化神经网络的连接权和网络结构 ,并在遗传进化过程中采取保留最佳个体的方法 ,建立基于遗传算法的 BP网络模型 ,并以广西的月降水量进行实例分析 ,计算结果表明 ,该方法预报精度高、而且稳定 .  相似文献
5.
A Genetic Algorithm for the Multidimensional Knapsack Problem   总被引:19,自引:0,他引:19  
In this paper we present a heuristic based upon genetic algorithms for the multidimensional knapsack problem. A heuristic operator which utilises problem-specific knowledge is incorporated into the standard genetic algorithm approach. Computational results show that the genetic algorithm heuristic is capable of obtaining high-quality solutions for problems of various characteristics, whilst requiring only a modest amount of computational effort. Computational results also show that the genetic algorithm heuristic gives superior quality solutions to a number of other heuristics.  相似文献
6.
A Genetic Algorithm for the Multidimensional Knapsack Problem   总被引:19,自引:0,他引:19  
In this paper we present a heuristic based upon genetic algorithms for the multidimensional knapsack problem. A heuristic operator which utilises problem-specific knowledge is incorporated into the standard genetic algorithm approach. Computational results show that the genetic algorithm heuristic is capable of obtaining high-quality solutions for problems of various characteristics, whilst requiring only a modest amount of computational effort. Computational results also show that the genetic algorithm heuristic gives superior quality solutions to a number of other heuristics.  相似文献
7.
资源公平分配的遗传算法研究   总被引:18,自引:5,他引:13  
文章对决策优化的经典问题席位公平分配进行了研究,提出应用遗传算法对该模型进行求解。两例资源公平分配决策实例研究表明,遗传算法优化结果较其它方法都更合理。  相似文献
8.
求解TSP的子空间遗传算法   总被引:17,自引:0,他引:17  
为避免遗传算法在计算过程中搜索冗余空间而耗费不必要的资源及时间,本提出了一种以经费遗传算法为基础,通过分析问题的特殊解集,以找出原问题解空间的区域特征从而构造出缩小算法搜索空间的子空间遗传算法,并用它求解TSP。结果表明,该算法实施起来非常有效。  相似文献
9.
A note on chance constrained programming with fuzzy coefficients   总被引:16,自引:0,他引:16  
This paper deals with nonlinear chance constrained programming as well as multiobjective case and goal programming with fuzzy coefficients occurring in not only constraints but also objectives. We also present a fuzzy simulation technique for handling fuzzy objective constraints and fuzzy goal constraints. Finally, a fuzzy simulation based genetic algorithm is employed to solve a numerical example.  相似文献
10.
Toward Fuzzy Optimization without Mathematical Ambiguity   总被引:15,自引:0,他引:15  
Fuzzy programming has been discussed widely in literature and applied in such various disciplines as operations research, economic management, business administration, and engineering. The main purpose of this paper is to present a brief review on fuzzy programming models, and classify them into three broad classes: expected value model, chance-constrained programming and dependent-chance programming. In order to solve general fuzzy programming models, a hybrid intelligent algorithm is also documented. Finally, some related topics are discussed.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号