首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9842篇
  免费   1501篇
  国内免费   518篇
化学   5139篇
晶体学   67篇
力学   950篇
综合类   49篇
数学   600篇
物理学   5056篇
  2024年   5篇
  2023年   76篇
  2022年   128篇
  2021年   196篇
  2020年   257篇
  2019年   284篇
  2018年   219篇
  2017年   214篇
  2016年   368篇
  2015年   343篇
  2014年   484篇
  2013年   929篇
  2012年   576篇
  2011年   603篇
  2010年   456篇
  2009年   599篇
  2008年   634篇
  2007年   688篇
  2006年   585篇
  2005年   455篇
  2004年   504篇
  2003年   458篇
  2002年   342篇
  2001年   315篇
  2000年   274篇
  1999年   222篇
  1998年   270篇
  1997年   165篇
  1996年   135篇
  1995年   140篇
  1994年   137篇
  1993年   123篇
  1992年   84篇
  1991年   79篇
  1990年   43篇
  1989年   68篇
  1988年   60篇
  1987年   40篇
  1986年   29篇
  1985年   32篇
  1984年   52篇
  1983年   20篇
  1982年   30篇
  1981年   22篇
  1980年   21篇
  1979年   21篇
  1978年   16篇
  1977年   13篇
  1976年   15篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
An adaptive tracking design strategy based on quantized state feedback is developed for uncertain nonholonomic mobile robots with unknown wheel slippage effects. All state variables and control torques are assumed to be quantized by the state and input quantizers, respectively, in a network control environment. Thus, the quantized state feedback information is only available for the tracking control design. An approximation-based adaptive controller using quantized states is recursively designed to ensure the robust adaptive tracking against unknown wheel slippage effects where the quantized-states-based adaptive mechanism is derived to compensate for unknown wheel slippage effects, system nonlinearities, and quantization errors. The boundedness of the quantization errors and estimated parameters in the closed-loop system is analyzed by presenting some theoretical lemmas. Based on these lemmas, we prove the uniform ultimate boundedness of closed-loop signals and the convergence of the trajectory tracking error in the presence of wheel slippage effects. Simulations verify the effectiveness of the resulting tracking scheme.  相似文献   
2.
贺丹  门亮 《计算力学学报》2018,35(3):326-330
基于一种新的各向异性修正偶应力理论,建立了碳纳米管增强复合材料功能梯度板的自由振动模型。该模型能够描述尺度效应,且仅包含一个尺度参数。基于一阶剪切变形理论和哈密顿原理推演了板的运动微分方程,并以四边简支板为例给出了自振频率的解析解。讨论了板的几何尺寸、碳纳米管体分比含量和分布方式等因素对板的自振频率的影响。结果表明,本文模型所预测的板的自振基频总是高于经典弹性理论的Mindlin板模型的预测结果,两者间的差异在板的几何尺寸接近尺度参数的值时非常明显,且会随着板的几何尺寸的增大而逐渐消失。  相似文献   
3.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
4.
ABSTRACT

In this research, ground-state electronic structure and optical properties along with photoinduced electron dynamics of Si nanowires oriented in various directions are reviewed. These nanowires are significant functional units of future nano-electronic devices. All observables are computed for a distribution of wave vectors at ambient temperature. Optical properties are computed under the approximation of momentum conservation. The total absorption is composed of partial contributions from fixed values of momentum. The on-the-fly non-adiabatic couplings obtained along the ab initio molecular dynamics nuclear trajectories are used as parameters for Redfield density matrix equation of motion. The main outcomes of this study are transition energies, light absorption spectra, electron and hole relaxation rates, and electron transport properties. The results of these calculations would contribute to the understanding of the mechanism of electron transfer process on the Si nanowires for optoelectronic applications.  相似文献   
5.
A dual catalytic setup based on N‐heterocyclic olefins (NHOs) and magnesium bis(hexamethyldisilazide) (Mg(HMDS)2) was used to prepare poly(propylene oxide) with a molar mass (Mn) >500 000 g mol?1, in some cases even >106 g mol?1, as determined by GPC/light scattering. This is achieved by combining the rapid polymerization characteristics of a zwitterionic, Lewis pair type mechanism with the efficient epoxide activation by the MgII species. Transfer‐to‐monomer, traditionally frustrating attempts at synthesizing polyethers with a high degree of polymerization, is practically removed as a limiting factor by this approach. NMR and MALDI‐ToF MS experiments reveal key aspects of the proposed mechanism, whereby the polymerization is initiated via nucleophilic attack by the NHO on the activated monomer, generating a zwitterionic species. This strategy can also be extended to other epoxides, including functionalized monomers.  相似文献   
6.
An amazing phenomenon of the relative magnitude of modulus of two liquid-crystal (LC) gels is found inverted under/above their phase transition temperature TLC-iso, which is further proved to be caused by their diverse morphology flexibility. By testing the polarity of two LCs, gelator POSS-G1-Boc (POSS=polyhedral oligomeric silsesquioxane) was discovered to self-assemble into more flexible structures in a relatively low polar LC, whereas more rigid ones are formed in higher polar LC. Hence, a fitting function to connect morphology flexibility with solvent polarity was established, which can even be generalized to a number of common solvents. Experimental observations and coarse-grained molecular dynamics simulations revealed that solvent polarity mirrors a “Morse code”, with each “code” corresponding to a specific morphology flexibility.  相似文献   
7.
We report the results of our investigation of magnetization and heat capacity on a series of compounds Ce1?xYxNiGe2 (x=0.1,0.2 and 0.4) under the influence of external magnetic field. Our studies of the thermodynamic quantity ?dM/dT on these compounds indicate that magnetic frustration persists in Ce0.9Y0.1NiGe2, as also reported for the parent compound CeNiGe2. The weak signature of this frustration is also noted in Ce0.8Y0.2NiGe2, whereas, it is suppressed in Ce0.6Y0.4NiGe2. Heat capacity studies on Ce0.9Y0.1NiGe2 and Ce0.8Y0.2NiGe2 indicate the presence of a new magnetic anomaly at high field which indicates that quantum criticality is absent in these compounds. However, for Ce0.6Y0.4NiGe2 such an anomaly is not noted. For this later compound, the magnetic field (H) and temperature (T) dependence of heat capacity and magnetization obey H/T scaling above critical fields. However, the obtained scaling critical parameter (δ) is 1.6, which is away from mean field value of 3. This deviation suggests the presence of unusual fluctuations and anomalous quantum criticality in these compounds. This unusual fluctuation may arise from disorderness induced by Y-substitution.  相似文献   
8.
We have investigated, using two-component relativistic density functional theory (DFT) at ZORA-SO-BP86 and ZORA-SO-PBE0 level, the occurrence of relativistic effects on the 1H, 13C, and 15N NMR chemical shifts of 1-methylpyridinium halides [MP][X] and 1-butyl-3-methylpyridinium trihalides [BMP][X3] ionic liquids (ILs) (X=Cl, Br, I) as a result of a non-covalent interaction with the heavy anions. Our results indicate a sizeable deshielding effect in ion pairs when the anion is I and I3. A smaller, though nonzero, effect is observed also with bromine while chlorine based anions do not produce an appreciable relativistic shift. The chemical shift of the carbon atoms of the aromatic ring shows an inverse halogen dependence that has been rationalized based on the little C-2s orbital contribution to the σ-type interaction between the cation and anion. This is the first detailed account and systematic theoretical investigation of a relativistic heavy atom effect on the NMR chemical shifts of light atoms in the absence of covalent bonds. Our work paves the way and suggests the direction for an experimental investigation of such elusive signatures of ion pairing in ILs.  相似文献   
9.
In the context of designing an efficient thermoelectric energy-conversion device at nanoscale level, we suggest several important tuning parameters to enhance the performance of thermoelectric converters. We consider a simple molecular junction, which is always helpful to understand the basic mechanisms in a deeper way, where a benzene molecule is coupled to two external baths having unequal temperatures. The key component responsible for achieving better performance is associated with the asymmetric nature of transmission function, and in the present work, we show that it can be implemented in different ways by regulating the physical parameters involving the system. Employing a tight-binding framework we calculate electrical and thermal conductances, thermopower, and figure of merit (FOM) by using Landauer integrals, and thoroughly examine the critical roles played by molecule-to-lead (ML) interface geometry, magnetic field, chemical substituent group, ML coupling, and the direct coupling between the two leads. Our results show that a reasonably large FOM (≫1) can be obtained and lead to a possibility of regulating the efficiency by selectively tuning the physical parameters. We believe that the present analysis will enhance the understanding of designing efficient thermoelectric devices, and can be verified in a laboratory.  相似文献   
10.
This Personal Account describes the author's involvement in the field of microwave‐assisted organic synthesis (MAOS) from the late 1990’s starting out with kitchen microwave ovens right through to the development of a reactor in 2016 that – although not using microwave technology – in many ways mimics the performance of a modern laboratory microwave. The reader is taken along a journey that has spanned two decades of intense research on various aspects of microwave chemistry, and, at the same time, was intimately linked to key innovations regarding equipment design and development. A “behind the scenes” approach is taken in this article to share – from a very personal point of view – how specific projects and research ideas were conceived and developed in my research group, and how in general the field of microwave chemistry has progressed in the last two decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号