首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   2篇
  国内免费   13篇
化学   21篇
晶体学   2篇
力学   110篇
综合类   1篇
数学   102篇
物理学   59篇
  2022年   1篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   13篇
  2015年   6篇
  2014年   7篇
  2013年   27篇
  2011年   10篇
  2010年   4篇
  2009年   15篇
  2008年   15篇
  2007年   18篇
  2006年   18篇
  2005年   10篇
  2004年   12篇
  2003年   22篇
  2002年   9篇
  2001年   19篇
  2000年   9篇
  1999年   17篇
  1998年   10篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1936年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
1.
Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure‐deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in‐plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas.  相似文献   
2.
A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner–Mindlin plate model.  相似文献   
3.
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble–solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble–solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes–Reynolds–Young–Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated.  相似文献   
4.
For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece.  相似文献   
5.
The methods of [vdP-Sa, vdP1, vdP2] are applied to the fourth Painlevé equation. One obtains a Riemann–Hilbert correspondence between moduli spaces of rank two connections on ?1 and moduli spaces for the monodromy data. The moduli spaces for these connections are identified with Okamoto–Painlevé varieties and the Painlevé property follows. For an explicit computation of the full group of Bäcklund transformations, rank three connections on ?1 are introduced, inspired by the symmetric form for PIV, studied by M. Noumi and Y. Yamada.  相似文献   
6.
In this article, we give a classification of the 3-dimensional associative algebras over the complex numbers, including a construction of the moduli space, using versal deformations to determine how the space is glued together.  相似文献   
7.
The objective of this paper is to present an extension of the Lagrangian Smoothed Particle Hydrodynamics (SPH) method to solve three-dimensional shell-like structures undergoing large deformations. The present method is an enhancement of the classical stabilized SPH commonly used for 3D continua, by introducing a Reissner–Mindlin shell formulation, allowing the modeling of moderately thin structure using only one layer of particles in the shell mid-surface. The proposed Shell-based SPH method is efficient and very fast compared to the classical continuum SPH method. The Total Lagrangian Formulation valid for large deformations is adopted using a strong formulation of the differential equilibrium equations based on the principle of collocation. The resulting non-linear dynamic problem is solved incrementally using the explicit time integration scheme, suited to highly dynamic applications. To validate the reliability and accuracy of the proposed Shell-based SPH method in solving shell-like structure problems, several numerical applications including geometrically non-linear behavior are performed and the results are compared with analytical solutions when available and also with numerical reference solutions available in the literature or obtained using the Finite Element method by means of ABAQUS© commercial software.  相似文献   
8.
Particle-reinforced rubbers are composite materials consisting of randomly distributed, stiff fibers/particles in a soft elastomeric material. Since the particles are stiff compared to the embedding rubber, their deformation can be ignored for all practical purposes. However, due to the softness of the rubber, they can undergo rigid body translations and rotations. Constitutive models accounting for the effect of such particle motions on the macroscopic response under prescribed deformations on the boundary have been developed recently. But, in some applications (e.g., magneto-active elastomers), the particles may experience additional torques as a consequence of an externally applied (magnetic) field, which, in turn, can affect the overall rotation of the particles in the rubber, and therefore also the macroscopic response of the composite. This paper is concerned with the development of constitutive models for particle-reinforced elastomers, which are designed to account for externally applied torques on the internally distributed particles, in addition to the externally applied deformation on the boundary of the composite. For this purpose, we propose a new variational framework involving suitably prescribed eigenstresses on the particles. For simplicity, the framework is applied to an elastomer reinforced by aligned, rigid, cylindrical fibers of elliptical cross section, which can undergo finite rotations in the context of a finite-deformation, plane strain problem for the composite. In particular, expressions are derived for the average in-plane rotation of the fibers as a function of the torques that are applied on them, both under vanishing and prescribed strain on the boundary. The results of this work will make possible the development of improved constitutive models for magneto-active elastomers, and other types of smart composite materials that are susceptible to externally applied torques.  相似文献   
9.
The micrometric changes over the size of the objects produced by the temperature variations can create deleterious effects; the decoupling of soldering points in electronic circuits is one of them. In this work, we present a system based on digital holographic interferometry to quantify the magnitude of the changes produced on an electronic circuit board as it operates at very low electric currents. For the system to work, two digital holograms of the object are registered for different temperatures. These holograms are reconstructed numerically in a computer by using Fresnel's approximation to make a phase difference map. This map is converted into micrometer size variations by means of a lookup table. The implemented system allows for determining mechanical deformations in the range of 0.5–4 μm for a regular electronic circuit board drawing an electric current from 10 μA to 50 μA.  相似文献   
10.
Tao Zhang  Heyu Zhang 《代数通讯》2020,48(8):3204-3221
Abstract

In this paper, we introduced the notion of Hom-Lie antialgebras. The representations and cohomology theory of Hom-Lie antialgebras are investigated. We prove that the equivalent classes of abelian extensions of Hom-Lie antialgebras are in one-to-one correspondence to elements of the second cohomology group. We also prove that 1-parameter infinitesimal deformation of a Hom-Lie antialgebra are characterized by 2-cocycles of this Hom-Lie antialgebra with adjoint representation in itself. The notion of Nijenhuis operators of Hom-Lie antialgebra is introduced to describe trivial deformations.

Communicated by Dr. Pavel Kolesnikov  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号