首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   40篇
  国内免费   75篇
化学   298篇
晶体学   1篇
力学   49篇
综合类   17篇
数学   69篇
物理学   76篇
  2023年   5篇
  2022年   1篇
  2021年   11篇
  2020年   13篇
  2019年   10篇
  2018年   11篇
  2017年   7篇
  2016年   9篇
  2015年   18篇
  2014年   28篇
  2013年   30篇
  2012年   17篇
  2011年   20篇
  2010年   15篇
  2009年   20篇
  2008年   27篇
  2007年   29篇
  2006年   24篇
  2005年   23篇
  2004年   23篇
  2003年   21篇
  2002年   22篇
  2001年   17篇
  2000年   12篇
  1999年   12篇
  1998年   8篇
  1997年   10篇
  1996年   11篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
排序方式: 共有510条查询结果,搜索用时 15 毫秒
1.
2.
In this study, a rapid and highly sensitive ultra high performance liquid chromatography with triple quadrupole mass spectrometry method with the mobile phase of acetonitrile and 0.1% aqueous formic acid was established and successfully applied to comparatively analyze main active components after their compatibility. Besides, the effects of Scutellariae Radix, Coptidis Rhizoma and combined extracts on type 2 diabetic rats induced by high‐fat diet along with low dose of streptozocin were investigated. Under the optimized chromatographic conditions, good separation of seven target components was achieved within 12 min. All calibration curves exhibited good linearity (R2 ≥ 0.999). The relative standard deviation of precision, repeatability and stability varied from 0.69 to 2.23, 0.98 to 2.56, and 0.92 to 2.57%, respectively. The recovery ranged from 91.11 to 105.35%. The contents of seven active components were notably reduced after compatibility; however, the hypoglycemic effect of combined extracts was stronger than single drug by decreasing the activities of fructose‐1,6‐bisphosphatase, glucose 6‐phosphatase, phosphoenolpyruvate carboxykinase and increasing the activities of glucokinase, phosphofructokinase, pyruvate kinase. Accordingly, the established analytical method was accurate and sensitive enough for quantitative evaluation of seven investigated compounds. Moreover, the combined extract had definite effects on type 2 diabetes through multiple components against multiple targets.  相似文献   
3.
In order to improve the performance of inorganic/organic composites, aluminum trihydroxide (ATH) core composites with a styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (MAH‐g‐SEBS) shell phase, and P‐N flame retardant as a synergistic agent, were prepared through an interface design. The effects of polyethylene glycol (PEG) content on the interfacial interaction, flame retardancy, thermal properties, and mechanical properties of high‐density polyethylene (HDPE)/ATH composites were investigated by small angle X‐ray diffraction, rotational rheometer, limiting oxygen index, thermogravimetric analysis (TGA), and tensile testing. The ATH synergistic effects of P‐N flame‐retardant improved the combustion performance of HDPE/ATH/PEG(3%)/MAH‐g‐SEBS/P‐N (abbreviated as HDPE/MH3/M‐g‐S/P‐N) composite by forming more carbon layer, increased the elongation at break from 21% to 558% compared to HDPE/ATH, and increased the interface thickness from 0.447 to 0.891 nm. SEM results support the compatibility of ATH with HDPE increased and the interfacial effect was enhanced. TGA showed the maximum decomposition temperature of the two stages and the yield of the residue at high temperature increased first and then decreased with the increase of PEG content. Rheological behavior showed the storage modulus, complex viscosity, and the relaxation time initially increased and then decreased with the increase of PEG content indicating PEG, M‐g‐S, and ATH powder gradually formed a partial coating, then a full coating, and finally an over‐coated core‐shell structured model.  相似文献   
4.
In this paper we develop models within a thermodynamic standpoint that are very similar in form to the classical Maxwell and Oldroyd-B models but differ from them in one important aspect, the manner in which they unload instantaneously from the deformed configuration. As long as the response is not instantaneous, the models that are derived cannot be differentiated from the Maxwell and Oldroyd-B models, respectively. The models can be viewed within the context of materials whose natural configuration evolves, the evolution being determined by the maximization of the rate of entropy production of the material. However, the underpinnings to develop the model are quite different from an earlier development by Rajagopal and Srinivasa [8] in that while the total response of the viscoelastic fluid satisfies the constraint of an incompressible material, the energy storage mechanism associated with the elastic response is allowed to be that for a compressible elastic solid and the dissipative mechanism associated with the viscous response allowed to be that for a compressible fluid, the total deformation however being isochoric. The analysis calls for a careful evaluation of firmly held customs in viscoelasticity wherein it is assumed that it is possible to subject a material to a purely instantaneous elastic response without any dissipation whatsoever. Finally, while the model developed by Rajagopal and Srinivasa [8] arises from the linearization of the non-linear elastic response that they chose and leads to a model wherein the instantaneous elastic response is isochoric, here we develop the model within the context of a different non-linear elastic response that need not be linearized but the instantaneous elastic response not necessarily being isochoric.  相似文献   
5.
6.
In this work, we investigated terpyridine (tpy)/Zn(II) complexation for the crosslinking of polymeric micelles of the branched poly(ethylene oxide)–poly(propylene oxide) block copolymer Tetronic® 1107 (T1107) in water and produce physically stable amphiphilic luminescent nanogels. Nanoparticles displayed a size of 235 ± 25 and 318 ± 57 nm before and after Zn(II) crosslinking, respectively, as measured by dynamic light scattering. High-resolution scanning electron microscopy analysis revealed the multimicellar nature of the crosslinked nanoparticles. In addition, Zn(II) complexation prevented nanoparticle disassembly after extreme dilution below the critical micellar concentration and reduced the minimum concentration required for the reverse thermal gelation of concentrated aqueous T1107 systems. The cell compatibility and uptake were initially assessed in the murine macrophage cell line RAW 264.7. Results showed that complexation increases the cell compatibility of the nanoparticles with respect to the non-complexed counterparts. In addition, non-crosslinked nanoparticles accumulated in the cell membrane, while the complexed ones were internalized, as observed by confocal laser scanning fluorescence microscopy. Then, the antiproliferative activity of the crosslinked nanoparticles was confirmed in the rhabdomyosarcoma cell line Rh30; their inhibitory concentration 50 (IC50) being 101 μg/mL (6.7 μM). Finally, the encapsulation and release of the hydrophobic antiretroviral efavirenz was characterized in vitro. Complexation slightly reduced the release kinetics with respect to the pristine nanoparticles. Overall results demonstrate the promise of this simple modification strategy to produce amphiphilic nanogels with a set of advantageous physicochemical, optical, and biological properties.  相似文献   
7.
The ease of undesirable agglomeration and a low efficiency are two problems that restrict the application of graphite nanoplatelets (GNPs) in epoxy resins (EP). Herein, a new strategy with melamine (MEL) as the precursor to functionalize GNPs chemically, which form a bonding layer that is compatible with epoxy matrix, is reported. The MEL fragments with secondary amine groups were grafted uniformly on the GNPs surface by covalent junctions to exploit the diazonium chemistry. This behavior led to a better dispersion and a stronger interaction with the epoxy matrix and resulted in an enhanced glass transition temperature and bending strength, compared with the pure EP. When only 1 wt% functionalized GNPs (f‐GNPs) was used, the Tg of the modified EP raised of about 15°C compared with pure EP, and the bending strength increased by approximately 39%. The dielectric constant of the EP with f‐GNPs was impacted slightly, and the dielectric loss decreased. At 105 Hz, the dielectric loss of the EP with 1 wt% f‐GNPs decreased by approximately 11% compared with pure EP. Therefore, diazotization modification of the GNPs is a useful approach to improve the compatibility in nanoparticle networks.  相似文献   
8.
Two A-B-C type conjugated amphiphilic triblock fullerene derivatives C60-2 HMTPB and C60-2 EHTPB were obtained in multi steps synthesis with three different blocks,and the amphiphilic diblock molecular C60-4 TPB was also preferred as a reference.When as modifying layer on zinc oxide(ZnO),the three fullerene derivatives can all reduce the work function of ZnO via modulation of the interfacial dipoles and lead a better electrical coupling.As introducing treatment of toluene,the obvious self-assembly of fullerene derivatives were observed,which were supported by X-ray diffraction and contact angle of water measurement.Base on PTB7-Th:PC71 BM system,the inverted organic solar cells devices with structure of ITO/ZnO/fullerene derivatives/PTB7-Th:PC71BM/Mo03/Al got power conversion efficiencies of 8.62%,8.83%and 9.00%for C60-4 TPB,C60-2 HMTPB and C60-2 EHTPB,respectively,compared 8.13%of devices with bare ZnO.The result of conjugated amphiphilic triblock fullerene derivatives provides a straightforward approaching by simultaneously modulating the morphology and interfacial work function of ZnO,which can also lead high performance in optoelectronic devices.  相似文献   
9.
Due to the environmental pollution caused by the petroleum-based polymer, poly (lactic acid) (PLA), a biodegradable and biocompatible polymer that obtained from natural and renewable sources, has attracted widespread attention. However, the brittleness of PLA greatly limits its application. In this study, the super toughened PLA-based blends were obtained by compatibilizing the PLA/thermoplastic polyurethane (TPU) blends with the polyurethane elastomer prepolymer (PUEP) as an active compatibilizer. The mechanical properties, thermal properties and corresponding toughening mechanism of PLA/TPU/PUEP system were studied by tensile test, instrumented impact test, dynamic mechanical analysis (DMA), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All the results demonstrate that the isocyanate (−NCO) group in PUEP is successfully reacted with the –OH groups at both sides of the PLA and the obtained polyurethane (PU)~PLA copolymer (PU ~ cõ PLA) significantly improves the interfacial compatibility of PLA/TPU blends. The gradually refined dispersed phase size and fuzzy phase interface as displayed in SEM images suggest a good interfacial compatibilization in the PLA/TPU/PUEP blends, probably due to the isocyanate reaction between PLA and PUEP. And the interfacial reaction and compatibilization among the components led to the formation of super toughened PLA/TPU/PUEP blends. And the instrumented impact results indicate that most of the impact toughness is provided by the crack propagation rather than the crack initiation during the entire fracture process.  相似文献   
10.
The vinyl group terminated water-borne polyurethanes (WPU) with different DMPA content were prepared. Subsequently the core-shell polyurethane/polyacrylate (PUA) composite emulsions were synthesized by soap-free emulsion copolymerization. The WPU as sole surfactant was used in copolymerization, and the lowest surface tension could be achieved to 38.8?mN m?1. Furthermore, the final conversion of acrylic monomer was reached to 98% in the case of WPU reactive seed. The FTIR-ATR indirectly confirmed the core-shell structure of PUA, simultaneously combined with DSC results found that the compatibility of WPU and PA was enhanced by growing grafting efficiency. The TEM results further indicated that the amount of DMPA in WPU had a great significant role in polymerization and final morphology structure. The PUA composite particles changed from scattered structure, core-shell structure to multi-core structure with increasing DMPA content. Correspondingly, the reinforcing and toughening effects were also found in PUA films with the increase content of DMPA by tensile testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号