首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  数学   9篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  1994年   1篇
排序方式: 共有9条查询结果,搜索用时 109 毫秒
1
1.
Rainfall forecasting by technological machine learning models   总被引:5,自引:0,他引:5  
Accurate forecasting of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. Recurrent artificial neural networks (RNNS) have played a crucial role in forecasting rainfall data. Meanwhile, support vector machines (SVMs) have been successfully employed to solve nonlinear regression and time series problems. This investigation elucidates the feasibility of hybrid model of RNNs and SVMs, namely RSVR, to forecast rainfall depth values. Moreover, chaotic particle swarm optimization algorithm (CPSO) is employed to choose the parameters of a SVR model. Subsequently, example of rainfall values during typhoon periods from Northern Taiwan is used to illustrate the proposed RSVRCPSO model. The empirical results reveal that the proposed model yields well forecasting performance, RSVRCPSO model provides a promising alternative for forecasting rainfall values.  相似文献
2.
基于支持向量机的飞行事故率预测模型   总被引:1,自引:0,他引:1  
飞行事故率是表征飞行安全水平的重要指标,其预测是典型的小样本问题.针对目前飞行事故率预测中存在的预测精度不高的问题,提出了一种基于回归支持向量机的飞行事故率预测建模方法.最后结合实际算例,采用SVR进行了飞行事故率预测建模并把预测结果与灰色预测和灰色马尔柯夫链预测进行了对比.仿真结果表明SVR具有很高的建模精度和泛化能力,从而验证了采用SVR进行航空飞行事故率预测的合理性和先进性.  相似文献
3.
Hybridization chaotic mapping functions with optimization algorithms into a support vector regression model has been shown its efficient potential to avoid converging prematurely. It is deserved to explore more possibility by hybridizing with other optimization algorithms. Electricity demand sometimes demonstrates a seasonal tendency due to complicate economic activities or climate cyclic nature. This investigation presents a SVR-based electricity forecasting model which applied a novel hybrid algorithm, namely chaotic gravitational search algorithm (CGSA), to improve the forecasting performance. The proposed CGSA employs the chaotic local search by logistic chaotic mapping function in the iteration of the original GSA to search and refine the current best solution. In addition, seasonal mechanism is also applied to deal with seasonal electricity tendency. A numerical example from an existed reference is used to illustrate the forecasting performance of the proposed SSVRCGSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models.  相似文献
4.
随着新专业的设置问题越来越多地成为各个高校普遍面对的发展问题,人们逐渐意识到决策过程中的滞后性、盲目性、片面性问题给专业设置工作乃至于该专业的生命力和竞争力带来的负面影响.运用ANP-SVR算法深入分析了高校新专业设置过程中的主要问题及其内部包含的各种因素,利用10个专业进行建模分析,并利用SVR,算法对3个拟建专业进行回归分析,得到了理想结果.方法将主观决策数字化,为高校的决策者提供了一种解决问题的新方法.  相似文献
5.
Accurately electric load forecasting has become the most important management goal, however, electric load often presents nonlinear data patterns. Therefore, a rigid forecasting approach with strong general nonlinear mapping capabilities is essential. Support vector regression (SVR) applies the structural risk minimization principle to minimize an upper bound of the generalization errors, rather than minimizing the training errors which are used by ANNs. The purpose of this paper is to present a SVR model with immune algorithm (IA) to forecast the electric loads, IA is applied to the parameter determine of SVR model. The empirical results indicate that the SVR model with IA (SVRIA) results in better forecasting performance than the other methods, namely SVMG, regression model, and ANN model.  相似文献
6.
首先对我国1960-2017年的碳排放趋势分5个阶段分析,发现虽然在不同时期存在波动,但长期来看,我国碳排放强度呈逐步下降趋势.然后对差分平稳后的序列数据建立Adaboost-SVR预测模型,采用RMSE、MAPE、MAE、MSE四个评价指标比较Adaboost-SVR模型与Adaboost-DT、SVR、BP神经网络对碳排放强度的预测精度.结果表明,组合模型明显优于其他3种模型,对于碳排放强度预测具有很高的可靠性.另外,通过使用Adaboost-SVR模型进行后续年份预测,发现我国未来碳排放强度总体将继续缓慢下降.最后,基于二氧化碳排放量的LMID分解结果,提出调整能源产业结构, 促进可再生能源利用等节能减排建议.  相似文献
7.
构建适合于预测丽江国内旅游需求的预测模型,对推动丽江旅游业的发展具有重要意义.研究发现灰色GM(1,1)模型、三次指数平滑模型与GA-SVR模型都适用于预测丽江国内旅游需求,且GA-SVR模型为这三个单项模型中的最优模型.在此基础上,利用变权方法建立GM-ES-GASVR组合预测模型.通过对拟合与测试结果的对比分析,表明GM-ES-GASVR变权组合预测模型比单一模型的拟合与测试效果都有较大改善.  相似文献
8.
准确的旅游客流量预测对旅游目的地做好事前准备工作至关重要.然而旅游客流量具有明显的非线性和季节性特征,采取季节调整方法对样本数据进行预处理,消除季节性的影响,可以提高客流量预测的准确性.同时SVR(支持向量回归机)是一种良好的机器学习方法,非常适合预测研究,辅以PSO(粒子群算法)选取合适的回归参数可以获得更加精确的预测结果.提出了一种考虑季节影响并通过PSO优化SVR模型的旅游客流量预测模型,并以海南省三亚市为例进行了实证研究.研究结果表明,季节调整的PSO-SVR模型预测精度明显高于SVR、季节调整的SVR和PSO-SVR模型,是进行旅游客流量预测的有效工具.  相似文献
9.
本文在变量选择问题的基础上,提出了一种新的图示模型──减变残差图。并给出它的两种推广形式:均值平移异常值检验图和部分影响诊断图。通过它们不但可以容易地考察一个变量在模型中的作用和检验异常值,而且可以诊断样本点对模型和变量的影响大小。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号