首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  国内免费   2篇
  完全免费   1篇
  数学   68篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有68条查询结果,搜索用时 27 毫秒
1.
In this paper we consider kernel estimation of a density when the data are contaminated by random noise. More specifically we deal with the problem of how to choose the bandwidth parameter in practice. A theoretical optimal bandwidth is defined as the minimizer of the mean integrated squared error. We propose a bootstrap procedure to estimate this optimal bandwidth, and show its consistency. These results remain valid for the case of no measurement error, and hence also summarize part of the theory of bootstrap bandwidth selection in ordinary kernel density estimation. The finite sample performance of the proposed bootstrap selection procedure is demonstrated with a simulation study. An application to a real data example illustrates the use of the method. This research was supported by ‘Projet d’Actions de Recherche Concertées’ (No. 98/03-217) from the Belgian government. Financial support from the IAP research network nr P5/24 of the Belgian State (Federal Office for Scientific, Technical and Cultural Affairs) is also gratefully acknowledged.  相似文献
2.
Moderate Deviations and Large Deviations for Kernel Density Estimators   总被引:4,自引:0,他引:4  
Let f n be the non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d . It is proved that if the kernel function is an integrable function with bounded variation, and the common density function f of the random variables is continuous and f(x) 0 as |x| , then the moderate deviation principle and large deviation principle for hold.  相似文献
3.
核密度估计在预测风险价值中的应用   总被引:4,自引:0,他引:4  
通过研究核密度估计理论,提出了一种适应估计金融时间序列分布的L ap lace核密度函数.在单变量核密度估计的基础上建立了风险价值(V a lua at R isk,简记为VaR)预测的预测模型.通过对核密度估计变异系数的加权处理建立了两种加权VaR预测模型.最后,通过上证指数收益率对建立的VaR预测模型进行了实证分析,结果显示两种加权方法对上证指数收益率的VaR预测具有较高的效率.  相似文献
4.
Asymptotic Normality of Kernel Density Estimators under Dependence   总被引:4,自引:0,他引:4  
In this paper, we study the kernel methods for density estimation of stationary samples under generalized conditions, which unify both the linear and -mixing processes discussed in the literature and also adapt to the non-linear or/and non--mixing processes. Under general, mild conditions, the kernel density estimators are shown to be asymptotically normal. Some specific theorems are derived within various contexts, and their applications and relationship with the relevant references are considered. It is interesting that the conditions on the bandwidth may be very simple, even in the generalized context. The stationary sequences discussed cover a large number of (linear or nonlinear) time series and econometric models (such as the ARMA processes with ARCH errors).  相似文献
5.
基于Bootstrap方法的VaR区间估计   总被引:3,自引:0,他引:3  
曾翀  万建平 《经济数学》2009,26(1):58-63
本文介绍了非参数方法中基于自助法的三种区间的估计方法,并将它们应用到金融资产的VaR计算上.自助法很好地克服了历史模拟法的一些局限性.本文对上证综合指数(IA0001)进行了VaR计算的实证分析,计算了VaR点估计和区间估计,并比较了几种计算方法各自的特点,得出了一些有意义的结果.  相似文献
6.
线性过程误差下概率密度函数核估计的均方相合性   总被引:2,自引:0,他引:2  
设{Xt,t≥1}为一单边线性平稳过程序列,具有共同的未知密度函数f(x),本文定义通常的f(x)的核估计,在适当条件下,证明了其均方相合性.  相似文献
7.
随机删失数据下核密度估计的Berry-Esseen界   总被引:2,自引:0,他引:2       下载免费PDF全文
孙六全  朱力行 《数学学报》1999,42(4):627-636
本文在随机删失数据下研究了概率密度函数的核估计,获得了此核估计的一个Berry-Esseen界.  相似文献
8.
Nonparametric Density Estimation for a Long-Range Dependent Linear Process   总被引:2,自引:2,他引:0  
We estimate the marginal density function of a long-range dependent linear process by the kernel estimator. We assume the innovations are i.i.d. Then it is known that the term of the sample mean is dominant in the MISE of the kernel density estimator when the dependence is beyond some level which depends on the bandwidth and that the MISE has asymptotically the same form as for i.i.d. observations when the dependence is below the level. We call the latter the case where the dependence is not very strong and focus on it in this paper. We show that the asymptotic distribution of the kernel density estimator is the same as for i.i.d. observations and the effect of long-range dependence does not appear. In addition we describe some results for weakly dependent linear processes.  相似文献
9.
We use the local maxima of a redescending M-estimator to identify cluster, a method proposed already by Morgenthaler (in: H.D. Lawrence, S. Arthur (Eds.), Robust Regression, Dekker, New York, 1990, pp. 105–128) for finding regression clusters. We work out the method not only for classical regression but also for orthogonal regression and multivariate location and show that all three approaches are special cases of a general approach which includes also other cluster problems. For the general case we show consistency for an asymptotic objective function which generalizes the density in the multivariate case. The approach of orthogonal regression is applied to the identification of edges in noisy images.  相似文献
10.
This paper studies the generalized state density (GDOS) of near-historical extreme events of a set of independent and identically distributed (i.i.d.) random variables. The generalized density of states is proposed which is defined as a probability density function (p.d.f.). For the underlying distribution in the domain of attraction of the three well-known extreme value distribution families, we show the approximate form of the mean GDOS. Estimates of the mean GDOS are presented when the underlying distribution is unknown and the sample size is sufficiently large. Some simulations have been performed, which are found to agree with the theoretical results. The closing price data of the Dow-Jones industrial index are used to illustrate the obtained results.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号