首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   14篇
  国内免费   4篇
化学   54篇
力学   53篇
数学   9篇
物理学   102篇
  2023年   13篇
  2022年   25篇
  2021年   14篇
  2020年   21篇
  2019年   11篇
  2018年   18篇
  2017年   10篇
  2016年   10篇
  2015年   16篇
  2014年   16篇
  2013年   26篇
  2012年   13篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
1.
The characteristics of heat transfer in the three-dimensional stagnationpoint flow past a stretching/shrinking surface of the Al_2O_3-Cu/H_2O hybrid nanofluid with anisotropic slip are investigated. The partial differential equations are converted into a system of ordinary differential equations by valid similarity transformations. The simplified mathematical model is solved computationally by the bvp4c approach in the MATLAB operating system. This solving method is capable of generating more than one solutions when suitable initial guesses are proposed. The results are proven to have dual solutions, which consequently lead to the application of a stability analysis that verifies the achievability of the first solution. The findings reveal infinite values of the dual solutions at several measured parameters causing the non-appearance of the turning points and the critical values. The skin friction increases with the addition of nanoparticles, while the escalation of the anisotropic slip effect causes a reduction in the heat transfer rate.  相似文献   
2.
Influences of simultaneous utilization of pin channel and copper–water nanofluid on performance of plate-fin heat exchangers were experimentally explored and compared with results obtained for the base fluid flow inside a plain channel. Experimental results clearly indicate that compared with the plain channel, the pin channel significantly improves the thermal-hydraulic performance of the plate-fin heat exchanger, about 38%. In addition, the heat transfer coefficient as well as pressure drop are increased by using the nanofluids instead of the base fluid. Noticeable average performance factor of 1.65 is obtained for the simultaneous utilization of pin channel and nanofluid inside the plate-fin heat exchanger.  相似文献   
3.
The homogeneous and heterogeneous reactions in the boundary-layer of a flat surface are considered. The autocatalysts are assumed to be of regular sizes, while the solution is a dilute nanofluid. The heat release due to the chemical reactions is taken into account. The Buongiorno's model is used to describe the behaviors of this reaction system. This configuration makes the current model be different from all previous publications. Multiple solutions are given numerically to the rescaled nonlinear system, whose stability is verified. The results show that the strength coefficients of the homogeneous and heterogeneous reactions are key factors to cause the appearance of the multiple solutions in the distribution of the chemical reactions. Nanofluids enhance the diffusion of heat and help maintain the stability of chemical reactions.  相似文献   
4.
PurposeThe purpose of the current framework is to scrutinize the two-dimensional flow and heat transfer of Casson nanofluid over cylinder/plate along with impacts of thermophoresis and Brownian motion effects. Also, the effects of exponential thermal sink/source, bioconvection, and motile microorganisms are taken.Methodology/ApproachThe resulting non-linear equations (PDEs) are reformed into nonlinear ODEs by using appropriate similarity variables. The resultant non-linear (ODEs) were numerically evaluated by the use of the Bvp4c package in the mathematical solver MATLAB.FindingsThe numerical and graphical illustration regarding outcomes represents the performance of flow-involved physical parameters on velocity, temperature, concentration, and microorganism profiles. Additionally, the skin friction coefficient, local Nusselt number, local Sherwood number, and local microorganism density number are computed numerically for the current presented system. We noted that the velocity profile diminishes for the rising estimations of magnetic and mixed convection parameters. The Prandtl number corresponds with the declining performance of the temperature profile observed. The enhancement in the values of the Solutal Biot number and Brownian motion parameter increased in the concentration profile.OriginalityIn specific, this framework focuses on the rising heat transfer of Casson nanofluid with bioconvection by using a shooting mathematical model. The novel approach of the presented study is the use of motile microorganisms with exponential thermal sink/source in a Casson nano-fluid through a cylinder/plate. A presented study performed first time in the author’s opinion. Understanding the flow characteristics and behaviors of these nanofluids is crucial for the scientific community in the developing subject of nanofluids.  相似文献   
5.
《印度化学会志》2023,100(3):100937
Main core part of the research is to develop a novel mathematical model of MHD-Maxwell nanofluid over a stretching and shrinking surface. The stretching ratio, velocity slip and convective boundary conditions are also incorporated. The PDE's with associative boundary conditions are deduced into coupled highly non-linear ODE's by utilizing suitable transformations. The deduced dimensionless sets of Ordinary differential equations are solved by Optimal-Homotopy Analysis Method (OHAM). Behavior of pertinent parameters on the velocity, temperature and concentration fields as well as important aspects skin friction, Nusselt number and Sherwood number are recorded in Table 2. Outcomes declared that role of stretching ratio plays a prominent role in stretching surfaces its clearly recorded in Table 1(a & b).  相似文献   
6.
《印度化学会志》2023,100(3):100935
The educational value of nanofluids in several industrial and biological sectors, particularly in fluid movement systems known as peristalsis, has piqued researchers' interest in studying the peristaltic movement of nanofluids. Additionally, nanoparticles have crucial roles in many engineering and manufacturing processes, including those involving heat exchangers, cooling systems, boilers, MEMS, chemical engineering, laser diode arrays, and cool automotive engines. Various studies have been conducted on this subject. This is done by looking at how migratory gyrotactic microorganisms migrate through an artery that is anisotropically narrowing in a blood-based nanofluid that is non-Newtonian. To comprehend, the Powell-Eyring fluid model is used how the blood's rheology differs from that of a Newtonian fluid. Both Newtonian fluid characteristics and non-Newtonian traits can be seen in this fluid pattern. Equations for continuity, temperature, motile microbes, momentum, and concentration are used to create the mathematical formulation. The series solutions, which are produced using perturbation theory solutions are discussed using graphs for all dominant parameters. Discussion also includes the distribution of temperature, velocity, and swimming microorganisms. Additionally, the effects of wall shear stress, the Nusselt and Sherwood numbers, as well as the phenomena of trapping, are all examined in detail and shown in the graphs. Entropy generation analyses have also been undertaken. The investigation also reveals a crucial behaviour in the use of the heart-lung engine for extracorporeal blood circulation in medicine that may have an impact on the damage of red blood cells as a result of the large fluctuation in wall shear stress. When liquids are transported using arthro pumps and roller pumps in living organs, the results are likewise of significant use. The results are very helpful for executing particle movements in cardiac surgery and may be applicable to the fluid peristaltic pump used in haemodialysis.  相似文献   
7.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.  相似文献   
8.
The steady flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge with magnetic field and radiation effects are studied. The governing equations of the hybrid nanofluid are converted to the similarity equations by techniques of the similarity transformation. The bvp4c function that is available in MATLAB software is utilized for solving the similarity equations numerically. The numerical results are obtained for selected different values of parameters. The results discover that two solutions exist, up to a certain value of the stretching/shrinking and suction strengths. The critical value in which the solution is in existence decreases as nanoparticle volume fractions for copper and wedge angle parameter increase. It is also found that the hybrid nanofluid enhances the heat transfer rate compared with the regular nanofluid. The reduction of the heat transfer rate is observed with the increase in radiation parameter. The temporal stability analysis is performed to analyze the stability of the dual solutions, and it is revealed that only one of them is stable and physically reliable.  相似文献   
9.
G. Engels  R. E. Peck  Y. Kim 《实验传热》2013,26(3):181-198
A quasi-steady technique to simultaneously measure the local heat transfer coefficient and cooling effectiveness on surfaces involving film cooling situations is investigated. The method employs a composite slab consisting of a very thin laminate layer of low-thermal-conductivity material superposed upon a highly conductive metal substrate. The resulting heat transfer in the thin laminate is described by one-dimensional conduction. A very thin coating of thermochromic liquid crystals sprayed onto the surface of the laminate is used in conjunction with a computer image processing procedure to provide local surface temperature data. This information, combined with the substrate and mainstream gas temperatures, provides highly detailed (90 video pixels/cm2) local convection heat transfer distributions. The method is used to conduct flat-plate film cooling experiments consisting of a single row of discrete holes inclined at 35 to the mainstream flow. The local surface temperature is influenced by the combination of two interacting fluid streams at different temperatures. A numerical analysis was performed to assess the assumptions underlying the data reduction procedure. The experimental uncertainty of 7% in the heat transfer coefficient is comparable to prior studies. Furthermore, the uncertainty of 5% in the film cooling effectiveness, coupled with the negligible lateral conduction errors, indicates the present technique offers a unique capability for accurate measurement of the local film cooling effectiveness.  相似文献   
10.
Although the compression ignition engines are a significant source of power, their detrimental emissions create considerable problems to the environment as well as to humans. The objective of the present experimental investigation is to examine the effects of the magnetic nanofluid fuels on combustion performance characteristics and exhaust emissions. In this regard, the Fe3O4 nanoparticles dispersed in the diesel fuel with the nanoparticle concentrations of 0.4 and 0.8 vol% were employed for combustion in a single-cylinder, direct-injection diesel engine. After a series of experiments, it was demonstrated that the nanoparticle additives, even at very low concentrations, have considerable influence in diesel engine characteristics. Furthermore, the results indicated that the nanofluid fuel with nanoparticle concentration of 0.4 vol% shows better combustion characteristics in comparison with that of 0.8 vol%. Based on the experimental results, NO x and SO2 emissions dramatically reduce, while CO emissions and smoke opacity noticeably increase with increasing the dosing level of nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号