全文获取类型
收费全文 | 241篇 |
免费 | 79篇 |
专业分类
化学 | 2篇 |
力学 | 121篇 |
综合类 | 5篇 |
数学 | 98篇 |
物理学 | 94篇 |
出版年
2023年 | 1篇 |
2022年 | 7篇 |
2021年 | 3篇 |
2020年 | 8篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2017年 | 7篇 |
2016年 | 9篇 |
2015年 | 7篇 |
2014年 | 18篇 |
2013年 | 18篇 |
2012年 | 14篇 |
2011年 | 23篇 |
2010年 | 28篇 |
2009年 | 23篇 |
2008年 | 24篇 |
2007年 | 26篇 |
2006年 | 15篇 |
2005年 | 14篇 |
2004年 | 5篇 |
2003年 | 2篇 |
2002年 | 8篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 10篇 |
1997年 | 7篇 |
1996年 | 6篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1989年 | 1篇 |
排序方式: 共有320条查询结果,搜索用时 15 毫秒
1.
2.
应用边界层积分法,研究锥形喷嘴入口区域中湍动涡流的发展.球面坐标系中的控制方程,通过边界层的假定得到简化,并对边界层进行了积分.应用4阶Adams预测校正法求解该微分方程组.入口区域的切向和轴向速度,分别应用自由涡流和均匀速度分布来表示.由于缺乏收缩喷嘴中涡流的实验数据,需要用数值模拟对该发展模式进行逆向验证.数值模拟的结果证明,该解析模型在预测边界层参数中的能力,例如边界层的生长、剪切率和边界层厚度,以及不同锥度角时的涡流强度衰减率等.为所提出的方法引进一个简明而有效的程序,用以研究几何形状收缩设备内的边界层参数. 相似文献
3.
Bingham(宾汉)模型情况下,多采用通用公式进行圆管层流压降的解析计算,即将Bingham模型本构方程代入粘性流体圆管层流流动通用公式进行计算,仅能得到压降的解析解.新方法结合Bingham流体本构方程与运动方程,建立有关力学平衡方程,并运用代数方程的根式解理论对圆管层流流动时的非线性方程进行求解,可直接求得Bingham流体圆管层流压降及速度流核区半径的解析解,进一步可求得圆管层流速度解析解;Bingham流体圆管层流速度的直接影响因素为流量、塑性粘度和屈服值,研究发现速度流核宽度与屈服值成正比,与流量及塑性粘度成反比,且流核的宽度越大,流核区的速度越小. 相似文献
4.
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary. 相似文献
5.
研究了微平行管道内非牛顿流体––Eyring 流体在外加电场力和压力作用下的电渗流动. 在考虑微尺度效应, 电场作用, 非牛顿特性, 滑移边界等情况下, 建立Eyring流体在微平行管道内电渗流动的力学模型. 通过解线性Possion-Boltzmann方程和Cauchy动量方程, 给出Eyring 流体速度分布的精确解和近似解析解, 并探讨了上述因素对电渗流动的影响. 将电场力和压力对于Eyring流体电渗流动的速度分布的影响进行了比较分析, 得到有意义的结果. 相似文献
6.
(火积)耗散与熵增均可以作为传热不可逆性的度量, 当前(火积)理论的反对者认为(火积)是不必要的. 为说明(火积)的必要性, 从有效性的角度进行了论证, 即在描述传热过程不可逆性的变化上, (火积)的严格解析解存在, 而熵的严格解析解难以得到. 本文构建了孤立系内的一维及多维热传导模型, 求解了温度及其梯度的级数型解析解, 将其代入(火积)耗散的求解式, 得到其最初的形式为一多重级数的多重积分, 交换积分与级数计算顺序, 并利用特征函数的正交性, 将(火积)耗散求解式中的积分运算求出, 并使级数的维数降低, 最终将其表示为一稳态项与一瞬态项加和的形式, 其极限与文献中的结果一致. 通过对孤立系内(火积)耗散解析解的求解可以得出: 由于热传导过程熵与(火积)的解析解求解难度不同, 在描述传热过程不可逆性变化上, (火积)更加有效; 对于孤立系内不同维数的热传导问题, 只要温度场解析解存在, (火积)耗散解析解均可以应用特征函数正交性求解得到. 相似文献
7.
8.
在复域C内研究一类包含未知函数迭代的二阶微分方程x″(z)=G(z,x(z),x~2(z),…,x~m(z))解析解的存在性.通过Schr(?)der变换,即x(z)=y(αy~(-1)(z)),把这类方程转化为一种不含未知函数迭代的泛函微分方程α~2y″(αz)y″(z)-αy′(αz)y″(z)= (y′(z))~3G(y(z),y(αz),…,y(α~mz)),并给出它的局部可逆解析解.本文不仅讨论了双曲型情形0<|α|<1和共振的情形(α是一个单位根),而且还在Brjuno条件下讨论了共振点附近的情形(即单位根附近). 相似文献
9.
奇异协方差阵下有效前沿及有效组合的解析解 总被引:2,自引:0,他引:2
利用广义逆矩阵研究了协方差阵奇异时的投资组合问题,突破了传统方法中要求协方差阵可逆的限制,得到了证券市场存在有效组合的充要条件,并给出了有效前沿和有效组合的解析解,成功地推广了经典Markowitz模型,同时还将有助于证券组合有效子集的深入研究. 相似文献
10.