首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   116篇
  国内免费   31篇
化学   561篇
晶体学   2篇
力学   232篇
综合类   2篇
数学   95篇
物理学   335篇
  2023年   59篇
  2022年   42篇
  2021年   45篇
  2020年   93篇
  2019年   65篇
  2018年   74篇
  2017年   71篇
  2016年   84篇
  2015年   72篇
  2014年   75篇
  2013年   39篇
  2012年   44篇
  2011年   30篇
  2010年   45篇
  2009年   42篇
  2008年   23篇
  2007年   28篇
  2006年   51篇
  2005年   39篇
  2004年   20篇
  2003年   34篇
  2002年   23篇
  2001年   59篇
  2000年   32篇
  1999年   38篇
排序方式: 共有1227条查询结果,搜索用时 15 毫秒
1.
In recent years, with the improvement of people’s living standards, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. In this paper, the metabolic disorders in Sprague Dawley (SD) rats were induced by a choline-deficient, l -amino acid–defined (CDAA) diet. The therapeutic effects of polyene phosphatidylcholine (PPC) and Babao Dan (BBD) on NAFLD were observed. Lipidomic analysis was performed using ultra-high-performance liquid chromatography-Orbitrap MS, and data analysis and lipid identification were performed using the software LipidSearch. Both PPC and BBD can reduce lipid accumulation in the liver and improve abnormal biochemical indicators in rats, including reduction of triglycerides, total cholesterol, alanine transaminase and aspartate transaminase in serum. In addition, lipids in rat serum were systematically analyzed by lipidomics. The lipidomic results showed that the most obvious lipids with abnormal metabolism in CDAA diet–induced rats were glycerides (triglycerides and diacylglycerols), phospholipids and cholesterol esters. Both BBD and PPC partly reversed the disturbance to lipids induced by the CDAA diet. PPC may be more effective than BBD in alleviating NAFLD because it has a better effect on inhibiting the abnormal accumulation of lipids and reducing the inflammatory reaction in the body.  相似文献   
2.
Heusler Co2FeSi films with a uniaxial magnetic anisotropy and high ferromagnetic resonance frequency fr were deposited by an oblique sputtering technique on Ru underlayers with various thicknesses tRufrom 0 nm to 5 nm.It is revealed that the Ru underlayers reduce the grain size of Co2FeSi,dramatically enhance the magnetic anisotropy field HK induced by the internal stress from 242 Oe(1 Oe=79.5775 A·m^-1)to 582 Oe with an increment ratio of 2.4,while a low damping coefficient remains.The result of damping implies that the continuous interface between Ru and Co2FeSi induces a large in-plane anisotropic field without introducing additional external damping.As a result,excellent high-frequency soft magnetic properties with fr up to 6.69 GHz are achieved.  相似文献   
3.
Considering the importance of damage for the structural performance and for decreasing the identification error, this paper proposes an optimal sensor placement method based on a weighted standard deviation norm (WSDN) index. The standard deviation of the identified damage parameters is solved using the series expansion theory and probabilistic method to quantify the effect of a measurement error on damage identification. The damage estimation weight (DEW) index, which can reflect the importance of each element in the structural capabilities, is established based on a performance-damage curve. A significant DEW for a specified element indicates that the element is important for the structure and that its identification error should be small. The WSDN index is obtained from the Hadamard product of the standard deviations (SDs) and DEWs. Thus, the identification error of the entire structure is measured using the weighting coefficient. The optimal sensor placement (OSP) procedure is performed by minimizing the WSDN index. The proposed method can clearly decrease the uncertainties of the identification results for the important elements. Other OSP criteria, including the condition number, information entropy, and standard deviation norm, which aim to decrease the identification error, are discussed in this paper for comparison with the proposed method. Two numerical examples and an experiment, which pertain to the deformation performance, buckling features, and dynamic characteristics, are discussed to verify the advantages of the proposed method.  相似文献   
4.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   
5.
Research on fish locomotion has made extensive progress towards a better understanding of how fish control their flexible body and fin for propulsion and maneuvering. Although the biologically flexible fish fins are believed to be one of the most important features to achieve optimal swimming performance, due to the limitations of the existing numerical modeling tool, studies on a deformable fin with a non-uniformly distributed stiffness are rare. In this work, we present a fully coupled fluid–structure interaction solver which can cope with the dynamic interplay between flexible aquatic animal and the ambient medium. In this tool, the fluid is resolved by solving Navier–Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics is solved by a nonlinear finite element method. A sophisticated improved IQN-ILS coupling algorithm is employed to stabilize solution and accelerate convergence. To demonstrate the capability of the developed Fluid–Structure-Interaction solver, we investigated the effect of five different stiffness distributions on the propulsive performance of a caudal peduncle-fin model. It is shown that with a non-uniformly distributed stiffness along the surface of the caudal fin, we are able to replicate similar real fish fin deformation. Consistent with the experimental observations, our numerical results also indicate that the fin with a cupping stiffness profile generates the largest thrust and efficiency whereas a heterocercal flexible fin yields the least propulsion performance but has the best maneuverability.  相似文献   
6.
7.
Slippery liquid-infused porous surface (SLIPS) is a rising star in corrosion protection owing to its outstanding corrosive medium resistance and self-healing property. The large-area and facile fabrication of SLIPS remains a challenge lying on the way of its practical application. Herein, we develop a novel SLIPS based on a porous polyvinylidene fluoride (PVDF) substrate fabricated by thermally induced phase separation. A sphere-packing structure can be easily obtained by blade-coating followed by cooling. The SLIPS exhibits an extremely low sliding angle of 5.8° so that it can resist the fouling of even the Chinese ink, ascribing to its slippery dynamic surface with low surface energy. We also evaluated the anti-corrosion performance of the SLIPS and superhydrophobic PVDF coating by electrochemical impedance spectroscopy (EIS) and scanning Kelvin probe technique (SKP), both of which exhibited enhanced corrosion resistance in 3.5 wt% NaCl solution due to the physical oil and air barriers against the corrosive medium penetration. Nevertheless, the SLIPS coatings performed outstanding self-healing properties because of the high fluidity of infused oil to recover the surface damages, and the self-healing process was recorded by the SKP.  相似文献   
8.
9.
Alpha-phenylethanol (PE) is an essential chemical in the field of medicine and synthetic perfumery. Therefore, in this work, we used a supported Ni–B–P amorphous alloy catalyst (Ni–B–P/SiO2) in the hydrogenation of acetophenone (AP) to α-PE, which demonstrated excellent catalytic activity and selectivity, compared with Ni–B/SiO2 (KBH4 reduction of nickel salt). Ni–B–P/SiO2 exhibited a high AP hydrogenation conversion of approximately 99%, whereas the PE selectivity reached up to 94%, which is approximately 1.4-fold higher than that of Ni–B/SiO2 (about 69%), thereby directly proving the unique inhibition of AP hydrogenation over hydrogenation of P in the Ni–B catalytic system. The doped P in Ni–B–P/SiO2 enhances the oxidation resistance and maintains the valence stability of Ni and B. Furthermore, sufficient experimental data were collected to determine the kinetic parameters. Based on the Langmuir–Hinshelwood model, we assumed that (i) AP and H2 compete for adsorption on Ni–B–P/SiO2; (ii) AP has strong adsorptive capacity on Ni–B–P/SiO2; and (iii) PE coverage on the catalyst was negligible. Then, the dynamic equation was derived, which indicated that experimental data agree well with the dynamic model. Finally, the activation energy was confirmed to be 50.73 KJ/mol. This report will open up an avenue for the industrialization of amorphous alloy catalysts.  相似文献   
10.
旷世全才列奥纳多·达·芬奇(Leonardo da Vinci),被世人誉为画家、雕刻家、天文学家、发明家、音乐家、数学家、解剖学家、生理学家、地质学家、植物学家、作家、军事、建筑工程和制图师,是意大利文艺复兴时期人文主义的代表人物。本文对其流体力学相关思想及湍流、飞行、波浪和风暴等几个方面的研究贡献进行梳理,认为他是流体力学科学研究的先驱和奠基人,也是一位“流体力学家”。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号