首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  完全免费   1篇
  数学   5篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Variational region-based segmentation models can serve as effective tools for identifying all features and their boundaries in an image. To adapt such models to identify a local feature defined by geometric constraints, re-initializing iterations towards the feature offers a solution in some simple cases but does not in general lead to a reliable solution. This paper presents a dual level set model that is capable of automatically capturing a local feature of some interested region in three dimensions. An additive operator spitting method is developed for accelerating the solution process. Numerical tests show that the proposed model is robust in locally segmenting complex image structures.  相似文献
2.
Variational image denoising models based on regularization of gradients have been extensively studied. The total variation model by Rudin, Osher, and Fatemi (1992) [38] can preserve edges well but for images without edges (jumps), the solution to this model has the undesirable staircasing effect. To overcome this, mean curvature-based energy minimization models offer one approach for restoring both smooth (no edges) and nonsmooth (with edges) images. As such models lead to fourth order (instead of the usual second order) nonlinear partial differential equations, development of fast solvers is a challenging task. Previously stabilized fixed point methods and their associated multigrid methods were developed but the underlying operators must be regularized by a relatively large parameter. In this paper, we first present a fixed point curvature method for solving such equations and then propose a homotopy approach for varying the regularized parameter so that the Newton type method becomes applicable in a predictor-corrector framework. Numerical experiments show that both of our methods are able to maintain all important information in the image, and at the same time to filter out noise.  相似文献
3.
Variational registration models are non-rigid and deformable imaging techniques for accurate registration of two images. As with other models for inverse problems using the Tikhonov regularization, they must have a suitably chosen regularization term as well as a data fitting term. One distinct feature of registration models is that their fitting term is always highly nonlinear and this nonlinearity restricts the class of numerical methods that are applicable. This paper first reviews the current state-of-the-art numerical methods for such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then proposes a unified approach for designing fixed point type smoothers for multigrid methods. The diffusion registration model (second-order equations) and a curvature model (fourth-order equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers and comparisons to other methods are given. As expected of a multigrid method, being many orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical approach delivers fast and accurate results for a range of synthetic and real test images.  相似文献
4.
Variational models provide reliable formulation for segmentation of features and their boundaries in an image, following the seminal work of Mumford-Shah (1989, Commun. Pure Appl. Math.) on dividing a general surface into piecewise smooth sub-surfaces. A central idea of models based on this work is to minimize the length of feature’s boundaries (i.e., H1 Hausdorff measure). However there exist problems with irregular and oscillatory object boundaries, where minimizing such a length is not appropriate, as noted by Barchiesi et al. (2010, SIAM J. Multiscale Model. Simu.) who proposed to miminize L2 Lebesgue measure of the γ-neighborhood of the boundaries. This paper presents a dual level set selective segmentation model based on Barchiesi et al. (2010) to automatically select a local feature instead of all global features. Our model uses two level set functions: a global level set which segments all boundaries, and the local level set which evolves and finds the boundary of the object closest to the geometric constraints. Using real life images with oscillatory boundaries, we show qualitative results demonstrating the effectiveness of the proposed method.  相似文献
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号