首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4221篇
  免费   561篇
  国内免费   440篇
化学   1611篇
晶体学   23篇
力学   72篇
综合类   7篇
数学   1787篇
物理学   1722篇
  2024年   2篇
  2023年   149篇
  2022年   131篇
  2021年   159篇
  2020年   223篇
  2019年   112篇
  2018年   135篇
  2017年   166篇
  2016年   189篇
  2015年   164篇
  2014年   285篇
  2013年   340篇
  2012年   418篇
  2011年   439篇
  2010年   352篇
  2009年   355篇
  2008年   236篇
  2007年   289篇
  2006年   257篇
  2005年   149篇
  2004年   104篇
  2003年   84篇
  2002年   98篇
  2001年   115篇
  2000年   63篇
  1999年   81篇
  1998年   14篇
  1997年   23篇
  1996年   20篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   9篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
排序方式: 共有5222条查询结果,搜索用时 15 毫秒
1.
Some bouncing models are investigated in the framework of an extended theory of gravity. The extended gravity model is a simple extension of the General Relativity where an additional matter geometry coupling is introduced to account for the late time cosmic speed up phenomena. The dynamics of the models are discussed in the background of a flat FRW universe. Some viable models are reconstructed for specifically assumed bouncing scale factors. The behavior of the models are found to be decided mostly by the parameters of the respective models. The extended gravity based minimal matter-geometry coupling parameter has a role to remove the omega singularity occurring at the bouncing epoch. It is noted that the constructed models violate the energy conditions, however, in some cases this violation leads to the evolution of the models in phantom phase. The stability of the models are analyzed under linear homogeneous perturbations and it is found that, near the bounce, the models show instability but the perturbations decay out smoothly to provide stable models at late times.  相似文献   
2.

We study the Bell nonlocality of high dimensional quantum systems based on quantum entanglement. A quantitative relationship between the maximal expectation value B of Bell operators and the quantum entanglement concurrence C is obtained for even dimension pure states, with the upper and lower bounds of B governed by C.

  相似文献   
3.
This article presents vertically coupled, rectangular complementary split-ring resonator-shaped quad-band double-negative (DNG) metamaterial unit cells, that is, having both negative permittivity and permeability, which redirect negative refractive and also are not found in nature. The metamaterial is fabricated on magnesium zinc ferrite-based flexible microwave substrates, and the flexible substrates are chosen with two different concentrations of magnesium (Mg) denoted by Mg30 and Mg50 for 30% and 50% of Mg, which possess dielectric constants of 4.32 and 3.15 and loss tangents of 0.003 and 0.005, respectively. The proposed metamaterials are demonstrated by utilizing the CST microwave simulator, and their effective parameters are extracted according to the Nicolson-Ross-Wire method. With Mg30, the prepared, flexible metamaterial shows measured resonances at 3.70 GHz, 7 GHz, 8.60 GHz, and 9.78 GHz, whereas with Mg50 it shows the measured resonances at 4.10 GHz, 7.70 GHz, 9.33 GHz, and 10.62 GHz. Very good effective medium ratios (EMR) along with DNG properties are obtained, namely 6.5 and 5.85 for Mg30 and Mg50, respectively, with a physical dimension of 12.5 × 9.5 mm2 for both of the unit cells. Also, the electric field, magnetic field, and surface current distribution at different resonances and the polarization insensitivity at different polarization angles were observed. Thus, the designed new flexible substrate microwave materials based on DNG metamaterials are potential candidates for S-, C- and X-band applications, as well as for flexible microwave technologies.  相似文献   
4.
《中国物理 B》2021,30(6):60314-060314
Besides its fundamental importance, non-reciprocity has also found many potential applications in quantum technology. Recently, many quantum systems have been proposed to realize non-reciprocity, but stable non-reciprocal process is still experimentally difficult in general, due to the needed cyclical interactions in artificial systems or operational difficulties in solid state materials. Here, we propose a new kind of interaction induced non-reciprocal operation, based on the conventional stimulated-Raman-adiabatic-passage(STIRAP) setup, which removes the experimental difficulty of requiring cyclical interaction, and thus it is directly implementable in various quantum systems. Furthermore, we also illustrate our proposal on a chain of three coupled superconducting transmons, which can lead to a non-reciprocal circulator with high fidelity without a ring coupling configuration as in the previous schemes or implementations. Therefore, our protocol provides a promising way to explore fundamental non-reciprocal quantum physics as well as realize non-reciprocal quantum device.  相似文献   
5.
This paper is concerned with the Cauchy problem on the Boltzmann equation without angular cutoff assumption for hard potential in the whole space. When the initial data is a small perturbation of a global Maxwellian, the global existence of solution to this problem is proved in unweighted Sobolev spaces HN(Rx,v6) with N2. But if we want to obtain the optimal temporal decay estimates, we need to add the velocity weight function, in this case the global existence and the optimal temporal decay estimate of the Boltzmann equation are all established. Meanwhile, we further gain a more accurate energy estimate, which can guarantee the validity of the assumption in Chen et al. (0000).  相似文献   
6.
Liquid-liquid-solid systems are becoming increasingly common in everyday life with many possible applications. Here, we focus on a special case of such liquid-liquid-solid systems, namely, capillary suspensions. These capillary suspensions originate from particles that form a network based on capillary forces and are typically composed of solids in a bulk liquid with an added secondary liquid. The structure of particle networks based on capillary bridges possesses unique properties compared with networks formed via other attractive interactions where these differences are inherently related to the properties of the capillary bridges, such as bridge breaking and coalescence between adjacent bridges. Thus, to tailor the mechanical properties of capillary suspensions to specific requirements, it is important to understand the influences on different length scales ranging from the dynamics of the bridges with varying external stimuli to the often heterogeneous network structure.  相似文献   
7.
In this paper,we first construct compact embeddedλ-hypersurfaces with the topology of torus which are calledλ-torus in Euclidean spaces?n^+1.Then,we give many compact immersedλ-hypersurfaces in Euclidean spaces?n^+1.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号