首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   0篇
  国内免费   4篇
化学   2篇
力学   12篇
数学   137篇
物理学   26篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   10篇
  2014年   13篇
  2013年   22篇
  2012年   17篇
  2011年   9篇
  2010年   4篇
  2009年   13篇
  2008年   17篇
  2007年   13篇
  2006年   6篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  1999年   3篇
  1998年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
1.
2.
This paper presents a numerical investigation for the computation of wind or marine current turbines in a farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take into account for the turbines. In order to enforce the boundary condition onto the panel elements, a linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main advantage of the presented method is the use of a specific preconditioner well suited for the desired application. The chosen implementation proved to be very efficient with only 3 iterations of our preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these cases, and can be applied to many others. At the end of the paper, some applications (specifically, wake computations) in a farm are presented, along with a quantitative assessment of the computational time savings brought by the iterative approach.  相似文献   
3.
Previous experimental and theoretical work identified that the application of a static magnetic (B) field can improve the resolution of a quadrupole mass spectrometer (QMS) and this simple method of performance enhancement offers advantages for field deployment. Presented here are further data showing the effect of the transverse magnetic field upon the QMS performance. For the first time, the asymmetry in QMS operation with B x and B y is considered and explained in terms of operation in the fourth quadrant of the stability diagram. The results may be explained by considering the additional Lorentz force (v x B) experienced by the ion trajectories in each case. Using our numerical approach, we model not only the individual ion trajectories for a transverse B field applied in x and y but also the mass spectra and the effect of the magnetic field upon the stability diagram. Our theoretical findings, confirmed by experiment, show an improvement in resolution and ion transmission by application of magnetic field for certain operating conditions.
Figure
?  相似文献   
4.
Methodology and Computing in Applied Probability - In this paper, we pursue the optimal reinsurance-investment strategy of an insurer who can invest in both domestic and foreign markets. We assume...  相似文献   
5.
6.
Queueing Systems - The idea behind the recently introduced “age-of-information” performance measure of a network message processing system is that it indicates our knowledge regarding...  相似文献   
7.
Axial momentum carried by waves in a uniform waveguide is considered based on the conservation laws and a kind of the causality principle. Specifically, we examine (without resorting to constitutive data) steady-state waves of an arbitrary shape, periodic waves which speed differs from the speed of its form and binary waves carrying self-equilibrated momentum. The approach allows us to represent momentum as a product of the wave mass and the wave speed. The propagating wave mass, positive or negative, is the excess of that in the wave over its initial value. This general representation is valid for mechanical waves of arbitrary nature and intensity. The finite-amplitude longitudinal and periodic transverse waves are examined in more detail. It is shown in particular, that the transverse excitation of a string or an elastic beam results in the binary wave. The closed-form expressions for the drift in these waves functionally reduce to the Stokes’ drift in surface water waves (a half the latter by the value). Besides, based on the general representation an energy–momentum relation is discussed and the physical meaning of the so-called “wave momentum” is clarified.  相似文献   
8.
9.
Quasi-realistic heterotic-string models in the free fermionic formulation typically contain an anomalous U(1) that leads to supersymmetry breaking. Supersymmetry is restored by imposing F- and D-flatness on the vacuum. A three generation free fermionic standard-like model which did not admit stringent F- and D-flat directions has been presented (Cleaver et al. in Phys. Rev. D 78, 046009, 2008) and it was argued that all the moduli in that model were fixed. The particular property of that model was the reduction of the untwisted Higgs spectrum by a combination of symmetric and asymmetric internal dimension boundary conditions with respect to the internal fermions associated with the compactified dimensions. This reduction occurred without the need or presence of flat directions. In this paper we extend the analysis of free fermionic models with reduced Higgs spectrum to models with the same internal space but with modified gauge groups: SO(10) or flipped SU(5) subgroup. We show that all the models studied in this paper do admit stringent flat directions. Currently, the only examples of models that do not admit stringent flat directions are the standard-like models of Cleaver et al. (Phys. Rev. D 78, 046009, 2008). We comment on the relationship between flat directions and reduced Higgs in free fermionic models as well as the possible connection between moduli stabilization and model phenomenology.  相似文献   
10.
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号