首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  数学   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 8 毫秒
1
1.
The goal of this paper is to achieve a computational model and corresponding efficient algorithm for obtaining a sparse representation of the fitting surface to the given scattered data. The basic idea of the model is to utilize the principal shift invariant(PSI) space and the l_1 norm minimization. In order to obtain different sparsity of the approximation solution, the problem is represented as a multilevel LASSO(MLASSO)model with different regularization parameters. The MLASSO model can be solved efficiently by the alternating direction method of multipliers. Numerical experiments indicate that compared to the AGLASSO model and the basic MBA algorithm, the MLASSO model can provide an acceptable compromise between the minimization of the data mismatch term and the sparsity of the solution. Moreover, the solution by the MLASSO model can reflect the regions of the underlying surface where high gradients occur.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号