 首页 | 本学科首页 官方微博 | 高级检索

 按 中文标题 英文标题 中文关键词 英文关键词 中文摘要 英文摘要 作者中文名 作者英文名 单位中文名 单位英文名 基金中文名 基金英文名 杂志中文名 杂志英文名 栏目英文名 栏目英文名 DOI 责任编辑 分类号 杂志ISSN号 检索 检索词:

 收费全文 1篇 完全免费 4篇
 数学 5篇
 2019年 1篇 2010年 1篇 1989年 1篇 1984年 1篇 1965年 1篇

1
1.
Some new series inversion formulas of the general form.  相似文献
2.
3.
4.
The Catalan numbers $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,\ldots$ are given by $C(n)=\frac{1}{n+1}\binom{2n}{n}$ for $n\geq 0$. They are named for Eugene Catalan who studied them as early as 1838. They were also found by Leonhard Euler (1758), Nicholas von Fuss (1795), and Andreas von Segner (1758). The Catalan numbers have the binomial generating function $$\mathbf{C}(z) = \sum_{n=0}^{\infty}C(n)z^n = \frac{1 - \sqrt{1-4z}}{2z}$$ It is known that powers of the generating function $\mathbf{C}(z)$ are given by $$\mathbf{C}^a(z) = \sum_{n=0}^{\infty}\frac{a}{a+2n}\binom{a+2n}{n}z^n.$$ The above formula is not as widely known as it should be. We observe that it is an immediate, simple consequence of expansions first studied by J. L. Lagrange. Such series were used later by Heinrich August Rothe in 1793 to find remarkable generalizations of the Vandermonde convolution. For the equation $x^3 - 3x + 1 =0$, the numbers $\frac{1}{2k+1}\binom{3k}{k}$ analogous to Catalan numbers occur of course. Here we discuss the history of these expansions. and formulas due to L. C. Hsu and the author.  相似文献
5.
Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A（n,k;A） are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A（n,k;A）（x-Aκ）n-k=xn. （0.1） Similary, we define B（n,k;A） to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A（n,k;A）（x-Aκ）n-k=xn. （0.2） The main result of this paper is an explicit formula for B（n,k;A）, which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations （0.1） and （0.2）.  相似文献
1