首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
化学   4篇
数学   2篇
  2018年   1篇
  2017年   1篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
本文利用拟从属关系引入了某些$P$-叶亚纯解析函数新子类, 获得了相应函数类的积分表达式和系数估计. 特别地得到了Fekete-Szeg\"{o}不等式的精确结果.  相似文献   
2.
利用拟从属关系引进了一些新的P-叶解析函数的子类,应用解析函数的基本不等式和分析技巧,讨论了相应函数类的系数估计,得到了准确结果,推广了一些相关结果,并给出了Hadamard卷积在Fekete-Szeg问题上的应用.  相似文献   
3.
Little is known about the photoreceptors involved in the photoperiodism of unicellular organisms, which we elucidated by deriving their action spectra. The flagellated alga Euglena gracilis exhibits photoperiodism, with a long-day response in cell reproduction. The underlying clock is a circadian rhythm with photoinductive capability, peaking at subjective dusk and occurring at the 26th hour in continuous darkness (DD) when transferred from continuous light (LL); it regulates photoinduction, a high-irradiance response (HIR), of a dark-capability of progressing through cell division. We derived the action spectra by irradiating E. gracilis with monochromatic light for 3h at around the 26th hour; the action maxima occurred at 380, 450-460, 480, 610, 640, 660, 680, and 740nm. Except for the maximum at 450-460nm, which was always a major maximum, the maxima greatly depended on the red (R)/far-red (FR) ratio of the prior LL. The high R/FR ratio resulted in a dominant major peak at 640nm and minor peaks at 480 and 680nm, whereas the low ratio resulted in dominant major peaks at 610 and 740nm and minor peaks at 380 and 660nm; the critical fluence was minimally about 60mmolm(-2). These HIRs resulted from the accumulation of corresponding low-fluence responses (LFRs) because we found that repetition of a 3-min light/dark cycle, with critical fluences of 1mmolm(-2), lasting for 3h resulted in the same photoinduction as the continuous 3-h irradiation. Moreover, these LFRs expressed photoreversibility. Thus, photoperiodic photoinduction involves Euglena-phytochrome (640 and 740nm) and blue photoreceptor (460nm). Although 380, 480, 610, 660, and 680nm may also represent Euglena-phytochrome, a definite conclusion awaits further study.  相似文献   
4.
Radiation-induced stress, either from visible or UV light, is strongest at midday. We found that, in the absence of stress or time cues, Euglena gracilis Z was the most resistant to UV-C and UV-B at subjective midday, whether judged from immediate or reproductive survival. The circadian UV-resistance rhythms were free-running in stationary cultures under 1-h light/1-h dark cycles or continuous darkness, indicating that cell-cycle dependent DNA susceptibility to UV was not involved. We moreover examined what was the primary cause of the circadian UV resistance, estimated as the immediate cell survival. The half-maximal lethal dose (LD(50)) of UV-C at subjective midday (the most resistant phase) was 156 J/m(2), which is approximately 3-fold that at subjective midnight. The same was true for UV-B, except the LD(50) was approximately 13-fold that of UV-C. Temperature during UV irradiation had little effect, indicating that survival was not mediated via enzymatic reactions. Non-enzymatic antioxidants were added 5 min before UV irradiation. Dimethylsulfoxide (a hydroxyl radical scavenger) increased survival after UV-B, but had little effect after UV-C; conversely, sodium ascorbate increased survival after UV-C, but not after UV-B. These findings suggest that circadian rhythms of resistance to UVs involve a common mechanism for maximizing non-enzymatic antioxidative capacity at subjective midday, but the specific antioxidants differ.  相似文献   
5.
A novel type of circadian and photoperiodic control of the cell division cycle was found in photoautotrophic Euglena gracilis. When algae entrained to 24 h light-dark (LD) cycles (14 h L) were transferred to continuous darkness (DD) at the eighth hour of the final LD photoperiod, cell-cycle transition was arrested in phase G1, S or G2. The subsequent exposure of these dark-arrested cells to a 6 h light-break allowed the dark-arrested cells to undergo cell-cycle progression in DD, in a manner dependent on the circadian phase; maximum photoinduction occurred around dusk. Inhibitor experiments suggested that the photoinduced commitment of G2 cells to cell division required light for a signal originating in noncyclic photosynthetic electron transport (PET), particularly cytochrome b6-f but not for the metabolic energy required by the process. The fact that the circadian rhythm of photoinduction ran out-of-phase from that of noncyclic PET signaling suggests that the site of regulation by the former rhythm is downstream of noncyclic PET. The occurrence of maximum photoinduction around dusk suggests that the 'external coincidence' model of photoperiodic induction describes the activation of the photoinductive phase. Further evidence supporting this hypothesis is the relationship between cell reproduction and day length; the resulting sigmoidal curve indicates a combined effect of photosynthesizing period and circadian stimulation around dusk. Circadian control is shown to be an integral part of the mechanism for 24 h LD cycle-induced synchronous cell division.  相似文献   
6.
Irradiance spectra change spatiotemporally, and angiosperms adapt accordingly, mainly through phytochromes. This study challenges the long-held belief that the flagellated alga Euglena gracilis lacks phytochromes and is therefore unaffected by spectral changes. We photoautotrophically cultured the alga under continuous light (LL), then transferred it to darkness. After about 26h in darkness, different irradiations for 3h enabled cell division in dark-arrested G2 cells evoking a high-irradiance response (HIR). The spectral characteristics of the irradiation during the LL period (pre-irradiation) defined the spectral sensitivity in the subsequent dark period. LL with light rich in the red spectrum led to a HIR to the red spectrum (R-HIR), whereas light rich in the far-red spectrum (FR) led to a FR-HIR. Finishing the period of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) by a FR pulse enhanced the characteristics of the FR-HIR 26h later. By contrast, a R pulse given at the end of the pre-irradiation rich in FR potentiated the R-HIR. The effects were completely photoreversible between R and FR with critical fluences of about 2mmolm(-2), satisfying the classic diagnostic feature of phytochromes. The action spectrum of the FR effect at the end of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) had a main peak at 740nm and a minor peak at 380nm, whereas antagonization of the FR effect had a main peak at 640nm and a minor peak at 480nm. Wavelengths of 610 and 670nm appeared in both spectra. We also demonstrated the photoreversibility of 380/640, 480/740, and (610 and 670)/(640 and 740) nm. We conclude that Euglena displays phytochrome-like responses similar to the 'shade avoidance' and 'end-of-day FR' effects reported in angiosperms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号