首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   108篇
  国内免费   198篇
化学   266篇
晶体学   7篇
力学   53篇
综合类   10篇
数学   57篇
物理学   324篇
  2023年   23篇
  2022年   17篇
  2021年   13篇
  2020年   10篇
  2019年   24篇
  2018年   27篇
  2017年   7篇
  2016年   19篇
  2015年   20篇
  2014年   24篇
  2013年   21篇
  2012年   29篇
  2011年   21篇
  2010年   21篇
  2009年   26篇
  2008年   30篇
  2007年   21篇
  2006年   26篇
  2005年   27篇
  2004年   42篇
  2003年   31篇
  2002年   19篇
  2001年   17篇
  2000年   13篇
  1999年   11篇
  1998年   13篇
  1997年   9篇
  1996年   20篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   11篇
  1991年   8篇
  1990年   13篇
  1989年   8篇
  1988年   5篇
  1987年   2篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1959年   1篇
  1957年   3篇
  1956年   4篇
  1955年   2篇
  1954年   9篇
  1953年   7篇
  1952年   5篇
排序方式: 共有717条查询结果,搜索用时 15 毫秒
1.
报道了室温下级联中红外Er:YAG脉冲激光器。通过实验观测到级联发射的特征波长为1469 nm,确定了激发态吸收的特征波长为1676 nm。采用掺杂浓度(原子数分数)分别为7.5%和10%的两种Er:YAG晶体,通过实验对比了级联与非级联条件下的中红外输出能量。掺杂浓度为7.5%的Er:YAG中红外激光的最大单脉冲能量由非级联时的0.62 m J提高至级联时的0.99 m J,提高了约59.7%;掺杂浓度为10%的Er:YAG中红外激光的最大单脉冲能量由非级联时的1.04 m J提高至级联时的1.51 m J,提高了约45.2%。实验结果表明,常温低掺杂Er:YAG晶体可实现级联输出,并且级联有助于中红外激光单脉冲能量的提高。  相似文献   
2.
在光电子学应用中,器件性能主要取决于半导体纳米材料中的光生载流子动力学过程. 但是,受反应速率、材料表面积、材料组成等多种因素影响,描述其中的动力学过程非常具有挑战性. 模拟光生载流子动力学过程可以通过绝热分子动力学方法实现,即求解包含非绝热耦合项的含时薛定谔方程. 在众多绝热分子动力学方法中,面跳跃方法出色地平衡了计算精度和计算成本,因而成为描述半导体纳米材料中不同非绝热过程间竞争的有力工具,已被用来模拟材料中的超快动力学过程和其他复杂效应,如Janus过渡金属二硫族化合物范德华异质结中的电荷分离. 本综述通过介绍该领域代表性的理论及实验工作,阐述了光生载流子对半导体纳米材料性能的重要影响,以及面跳跃方法在描述其动力学行为中的重要作用. 由于日趋复杂的材料体系对理论工作提出了巨大的挑战,本综述重点介绍了最近用于模拟这些复杂材料的一些开创性的新方法,包括高精度的电子结构方法和与之相结合的绝热分子动力学方法.  相似文献   
3.
激光诱导击穿光谱(LIBS)作为一种快速、实时的元素分析技术,由于其在痕量元素探测、地质环境监测等领域有着广阔的应用前景,而受到人们极大的关注。在实际应用中,样品表面是影响等离子体产生及其特性的关键环境因素之一。在大气环境下,利用脉宽为8 ns、波长为1 064 nm的纳秒脉冲激光产生等离子体,对比研究了天然岩石样品在非平坦和平坦表面条件下等离子体的发射光谱。基于激光辅助辐射波模型,阐释了非平坦样品表面对其光谱特性的影响。通过对比等离子体时间积分光谱,发现非平坦样品的谱线强度相比于平坦样品的谱线强度减弱了近70%,该结果说明非平坦样品表面对LIBS真实测量数据的负面影响不可忽视。针对褐铁矿样品中的谱线Fe Ⅰ 404.58 nm和Fe Ⅰ 438.35 nm,研究了在平坦和非平坦样品表面下的峰值强度以及其衰减因子随激光能量的变化规律,结果表明非平坦样品表面条件下采集的光谱强度始终低于平坦样品表面的光谱强度。光谱强度的衰减因子先随激光能量增大而逐渐降低,并在激光能量33 mJ达到最小值,后随激光能量的进一步增大而增大。实验结果进一步表明在非平坦样品表面条件下产生了密度较低的等离子体,并且非平坦与平坦样品的电子密度的比值在激光能量33 mJ时达到最小,此结果与光谱强度的衰减因子随激光能量的变化趋势一致,这是源于非平坦样品表面会形成较大激光入射角度,使得激光等离子体能量吸收区厚度变薄,产生等离子体屏蔽效应所对应的激光能量阈值升高。此外,样品表面状态和激光能量对等离子体温度的影响甚微。阐述了非正入射时等离子体特征参数与正入射时等离子体特征参数的联系和差异,揭示了非平坦样品激光等离子体特征参量变化的内在物理机制,为室外LIBS探测技术在元素定性和定量分析中光谱强度的校正提供参考。  相似文献   
4.
5.
针对机油滤清器工作工况下进出口压差、机油滤层强度及导流桩高度等问题, 通过试验测试与仿真相结合, 对滤清器初步设计进行了评估及优化, 以确保滤清器在工作工况下进出口压降及滤层强度能满足要求. 首先进行滤层性能试验, 得到滤层的惯性阻力系数和黏性阻力系数; 再通过滤层多孔介质CFD分析, 对滤清器进出口压降进行分析计算. 结果表明: 在-18℃、25℃和70℃的工况下, 进出口压降都小于10kPa, 满足相关要求. 针对滤层的最大主应力超过其抗拉强度的问题, 通过CAE仿真分析, 优化滤层与导流桩间隙, 将滤层最大主应力由110.1MPa降至36.99MPa, 小于其抗拉强度42.8MPa.  相似文献   
6.
7.
为了有效对抗激光制导武器,提升车载武器系统在战场上的生存能力,提出一种车载主动防护系统的激光诱偏干扰对抗技术。根据半主动制导武器系统的来袭威胁信息和特性,探讨了激光诱偏干扰技术实现的可行性;采用同步转发式干扰模式,通过实验装置记录了跟踪系统从跟踪识别目标到启动干扰系统的运动轨迹,验证了该系统能够在7s有效反应时间内实施对抗干扰,达到主动防护的目的。  相似文献   
8.
高磊  于欣水  雷晓光 《大学化学》2019,34(12):45-53
天然产物(次生代谢产物)是大自然馈赠给人类的礼物,由于其复杂的骨架结构和良好的药用价值,吸引着化学家们对其进行结构鉴定以及化学合成。尽管人们在天然产物全合成中取得了巨大的成就,但仍然面临着合成路线长、产率低、缺乏选择性等问题。大自然是最伟大的化学家,它利用酶作为催化剂,往往能够高效地合成天然产物。在基因水平上探索大自然合成复杂多样的天然产物的奥秘不仅有助于人们进一步理解和认知有机化学,还为人们开发和利用大自然高效催化化学反应的工具——酶奠定了基础。  相似文献   
9.
称取蜂蜜样品2.00g至具塞离心管中,加入100μL同位素内标溶液(200μg·L~(-1))和10mL水,涡旋混匀,加入甲醇至20mL,涡旋混匀,以8 500转·min~(-1)离心5min,移取上清液0.50mL,用甲醇定容至10.0mL,涡旋混匀后,以8 500转·min~(-1)离心5min,取1.0mL上清液转移至具塞离心管中(内含混合均匀的吸附剂:30mg N-丙基乙二胺、15mg C_(18)粉末和50mg无水MgSO_4),涡旋混匀进行吸附净化,以8 500转·min~(-1)离心5min,转移全部上清液,于40℃下用氮气吹至近干,用甲醇-0.15%(体积分数,下同)甲酸溶液(1+9)混合液溶解残渣并定容至1.0mL,过0.22μm滤膜后供液相色谱-串联质谱分析。采用Agilent Eclipse XDB-C_(18)色谱柱进行分离,以不同比例的含5mmol·L~(-1)乙酸铵的0.15%甲酸溶液和甲醇为流动相进行梯度洗脱。质谱中采用电喷雾离子源正离子扫描方式和多反应监测模式,采用同位素内标法和外标法进行定量。吡蚜酮、呋虫胺、烯啶虫胺、噻虫嗪、氟啶虫酰胺、吡虫啉、噻虫胺、氯噻啉、啶虫脒、噻虫啉、4-(三氟甲基)烟酰胺和N-去甲基啶虫脒的质量浓度在一定范围内呈线性,测定下限(10S/N)在2.5~12.5μg·kg~(-1)之间。对空白蜂蜜样品进行加标回收试验,回收率在79.9%~108%之间,测定值的相对标准偏差(n=6)在1.7%~15%之间。  相似文献   
10.
基于木质素磺酸钠/聚乙烯亚胺纳滤膜的可行性,制备了ZIF-67改性的木质素磺酸钠/聚乙烯亚胺复合纳滤膜。通过层层自组装技术在聚砜基膜上沉积了ZIF-67改性的聚电解质阴/阳离子层,以不同的料液Mg SO_4、CaCl_2和NaCl为分离体系来探究ZIF-67改性木质素磺酸钠/聚乙烯亚胺复合膜的分离性能,发现本研究制备的ZIF-67改性木质素磺酸钠/聚乙烯亚胺复合膜在不降低截留率的前提下,渗透通量较木质素磺酸钠/聚乙烯亚胺纳滤膜可提高到约原来的两倍。本文运用层层自组装技术制备的ZIF-67改性的新型纳滤膜,可应用于水软化领域且简便可行。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号