首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   824篇
  免费   220篇
  国内免费   360篇
化学   538篇
晶体学   27篇
力学   64篇
综合类   36篇
数学   168篇
物理学   571篇
  2023年   22篇
  2022年   32篇
  2021年   27篇
  2020年   30篇
  2019年   30篇
  2018年   41篇
  2017年   23篇
  2016年   32篇
  2015年   33篇
  2014年   66篇
  2013年   46篇
  2012年   40篇
  2011年   45篇
  2010年   47篇
  2009年   52篇
  2008年   37篇
  2007年   43篇
  2006年   45篇
  2005年   47篇
  2004年   46篇
  2003年   42篇
  2002年   27篇
  2001年   26篇
  2000年   28篇
  1999年   30篇
  1998年   29篇
  1997年   34篇
  1996年   36篇
  1995年   26篇
  1994年   33篇
  1993年   23篇
  1992年   21篇
  1991年   22篇
  1990年   34篇
  1989年   28篇
  1988年   11篇
  1987年   21篇
  1986年   20篇
  1985年   20篇
  1984年   15篇
  1983年   14篇
  1982年   12篇
  1981年   19篇
  1980年   12篇
  1979年   7篇
  1978年   3篇
  1965年   4篇
  1963年   3篇
  1960年   4篇
  1936年   2篇
排序方式: 共有1404条查询结果,搜索用时 15 毫秒
1.
该文以高铼酸盐作为高锝酸盐的非放射性结构替代物,结合离子印迹技术的特异性、共价有机骨架(COF)材料的多孔性和酸/热稳定性,通过自由基聚合和季胺化反应,制备出表面离子印迹共价有机骨架(IICOF)材料,并将其应用于实际环境样品中高铼酸根离子的高效捕获.首先利用1,4-二醛基-2,5-二乙烯基苯与1,3,5-三(4-氨苯基)苯为构筑基元,通过微波辅助合成出乙烯基功能化的COF-V.然后以N-乙烯基咪唑和4-氯甲基苯乙烯作为功能单体产生带正电的结合位点,通过与模板离子(高铼酸根)的静电作用以及自由基聚合反应在COF-V表面制备出IICOF.考察了吸附剂用量、吸附时间、pH值、温度、初始浓度、共存离子等对IICOF吸附性能的影响.IICOF在<2 min即可达到吸附平衡状态,吸附热力学研究表明其对高铼酸根离子的吸附是一个放热的自发过程,在动力学上遵循准二级模型.在298.15 K时,最大吸附容量为416.67 mg/g.与非印迹复合材料相比,IICOF表现出更高的选择性、更快的动力学和更大的吸附容量.在珠江水以及尾矿渗滤液的加标吸附实验中,吸附效率分别在87%及98%以上,证实了IICOF能够在现实环境中有效去除高铼酸根离子.该技术为环境中高锝酸根的有效吸附、分离提取以及资源回收提供了一条新途径.  相似文献   
2.
脉搏波既不可简单地理解为可压缩血液流体中的压力纵波,也不可简单地理解为沿固体血管传播的涨缩位移横波,而是超乎普通想象的流-固耦合和纵波-横波耦合的复杂波。从分析耦合本构关系的新途径出发,本文中提出了一个流-固耦合/纵波-横波耦合的串联模型,可为解读“位数形势”中医脉诊提供更丰富的信息。结果表明,脉搏波耦合系统的等效体积压缩模量Ks以及相应的耦合系统脉搏波传播速度cs主要依赖于两个无量纲参数:血液-血管模量比Kb(p)/E(p)和薄壁血管径厚比D(p)/h0,它们因人而异、因人的不同脉搏位置而异。文中定量分析了它们对cs的影响,显示人体的Kb/E值在103数量级,从而cs值在100~101 m/s数量级,以适应人体生理生化反应。由临床有创测量,证实脉搏体积横波与脉搏压力纵波是相耦合地以相同速度传播;还显示脉搏波是在其波阵面上具有氧合生化反应的“生物波”。此外,还讨论了“脉压放大”现象与非线性本构关系和与血管分叉处加载增强反射之间的关系,并讨论了Lewis关于重搏波形成的假设。  相似文献   
3.
本文利用参数变易法研究了时间尺度上二阶变系数线性动力学方程的解与Ulam稳定性问题. 特别地,在不同的系数情形下建立了二阶常系数线性动力学方程的Ulam稳定性理论.  相似文献   
4.
高速开关电容阵列(SCA)具有高速采样、低功耗的特点,基于SCA的高速波形数字化是目前高精度时间测量的一个重要研究方向。为此,我们开展SCA芯片的研究,目前已设计完成原型ASIC设计,并正在进行后续版本的改进设计。为便于未来多版本ASIC的测试和评估,需设计具有一定通用性的数字读出模块,本论文工作主要介绍此模块的设计工作以及相应的数据读出软件。数字读出模块基于FPGA实现对待测ASIC的控制、配置及数据读出,采用DDR3片外存储芯片,使用USB3.0等接口进行数据传输;上位机软件基于Python3.7设计,实现了数据采集与波形绘制等功能。目前已使用设计完成的数字读出模块对第2版SCA ASIC进行了初步的测试,测试结果表明,此读出模块工作正常,且SCA芯片输出结果符合预期。  相似文献   
5.
为更加准确地描述机械磨削表面的接触刚度,本文在现有统计分析理论的基础上,提出了一种新的粗糙表面接触模型。模型针对接触表面微凸体形貌,将原有的球体假设采用cos函数曲线回转体代替,在假设形貌的基础上重新解算了微凸体弹塑性变形的临界压入深度,推导出了接触区域真实接触压力与接触刚度关系表达式。通过数值仿真方法得到了不同塑性指数下平均距离、接触刚度与接触压力之间的变化关系。对比结果显示,随着塑性指数的增大,本文模型的平均距离与球形模型的平均距离之间的差值逐渐增大。在接触刚度方面,本文模型相比球形模型更加贴近实验结果,并且随着塑性指数的增加,球形模型与本文模型之间的差值越来越大。本文模型结果与实验数据的相对偏差能够控制在5%以内,从而验证了本文模型的正确性,为更加准确地描述磨削表面零件的接触行为提供理论基础。  相似文献   
6.
针对Pythagorean模糊信息的决策问题,构建广义Pythagorean模糊信息加权有序加权平均(PF-GWOWA)算子。首先,提出PF-GWOWA算子,并证明Pythagorean模糊广义加权平均(PF-GWA)算子、Pythagorean模糊加权有序加权平均(PF-WOWA)算子与Pythagorean模糊加权平均(PF-WA)算子均为PF-GWOWA算子的特例;其次,根据GWOWA算子属性综合权重计算模型,利用PF-GWOWA算子对信息进行集结;最后,通过算例分析和传统方法对比,说明本文提出方法的合理性与有效性。  相似文献   
7.
烟碱是电子烟烟油中的主要成分,其含量决定了电子烟油的风味口感及产品的安全性。为了提高电子烟油烟碱含量的测量效率,该文采用近红外光谱技术和极限学习机回归(ELMR)建立了电子烟油烟碱含量的定量预测模型。实验结果表明:相比于传统的主成分回归(PCR)和偏最小二乘回归(PLSR)模型,所建立的ELMR预测模型的决定系数R2为0.926 2,远高于PCR预测模型的0.859 0和PLSR预测模型的0.860 4;同时,使用ELMR模型的预测均方根误差(RMSEP)为0.026 8,小于PCR预测模型的0.043 1和PLSR预测模型的0.040 9。以上结果说明该文所建立的近红外光谱定量模型能够应用于烟碱含量的快速准确测量,为实现电子烟油烟碱含量的实时在线监测和其它质量参数的快速测量奠定了良好的基础。  相似文献   
8.
双异步正交样品设计(DAOSD)是通过对样品体系施加浓度的微扰,诱导光谱信号产生动态变化,并通过数学处理研究样品中物质间相互作用的二维相关光谱方法。提高二维谱图的信噪比对于谱图中交叉峰的分辨乃至物质间相互作用的考察有着十分重要的意义。通过计算机模拟考察了DAOSD构建二维相关光谱的方法中样品浓度序列对光谱行为影响。结果表明,在溶液数量较少的情况下,通过改变样品的浓度和组合顺序,可以有效提高交叉峰的信噪比,从而得到更高质量的二维谱图。  相似文献   
9.
介绍了一种基于PXI总线的高精度、多通道定标器。可测量脉冲信号的最高重复频率为100 MHz,最高计数可达240。定标器有2种工作模式:定时计数模式和精确触发测量模式。定时计数模式工作在低计数率下(~1 MHz);精确触发测量模式可以工作在高计数率下(~100 MHz),可以满足兰州反应显微成像谱仪实验中对定标器的要求。基于可编程逻辑器件FPGA进行设计,使之变得灵活,方便进行升级和改造。  相似文献   
10.
磁共振成像技术被广泛应用于诊断医学和软组织成像,而磁共振对比剂有助于提高成像对比度.报道了一类共十二种基于钆-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)-酰肼结构的新型磁共振对比剂的设计、合成及性能表征. 0.5 T磁场下测得的弛豫率结果显示,对比剂5d、5h和5l的纵向弛豫率优于临床使用对比剂Gd-DOTA,分别达到4.67、4.85和5.33L·mmol-1·s-1.进一步动物活体体内肝靶向磁共振成像研究显示,对比剂5d具有作为肝靶向磁共振对比剂的应用潜力.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号