首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   23篇
  国内免费   18篇
化学   48篇
力学   18篇
综合类   7篇
数学   14篇
物理学   43篇
  2024年   1篇
  2023年   10篇
  2022年   13篇
  2021年   8篇
  2020年   4篇
  2019年   14篇
  2018年   8篇
  2017年   12篇
  2016年   4篇
  2015年   4篇
  2014年   12篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1965年   1篇
排序方式: 共有130条查询结果,搜索用时 16 毫秒
1.
基于高效液相色谱(HPLC)指纹图谱比较鱼腥草不同部位(茎、叶)化学成分的差异性,并综合评价鱼腥草不同部位的质量。建立鱼腥草不同部位的HPLC指纹图谱,通过相似度评价、化学模式识别及熵权TOPSIS法对其化学成分进行差异性研究,并对其质量标志物(槲皮苷)进行含量测定。建立的HPLC指纹图谱中鱼腥草药材及其茎叶均确定了8个共有峰,指认了其中6个成分;聚类分析(CA)和主成分分析(PCA)结果表明鱼腥草叶和茎的质量差异大,叶和药材的质量较接近;偏最小二乘法-判别分析(OPLS-DA)发现4种成分是造成不同批次样品差异性的主要标志物;熵权TOPSIS法分析显示同批次鱼腥草药材与其茎叶既有相关性也有差异性,且四川产地的鱼腥草药材质量较佳;含量测定结果显示,同批次鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎。鱼腥草不同部位HPLC指纹图谱存在显著差异。该方法可反映鱼腥草不同部位质量差异性,为鱼腥草药材的质量控制及资源开发利用提供参考。  相似文献   
2.
利用核黄素作为模板分子印迹在溶胶凝胶分子层并包裹碳量子点,制备荧光传感器(Carbon Quantum Dots@Molecular Imprinted Polymers,CD_(S)@MIPs)。在激发波长为370 nm时,该传感器特异性吸附核黄素后,520 nm处荧光随核黄素浓度的变化而变化,即520 nm处的荧光作为变量信号,碳量子点在460 nm的荧光作为参考信号,形成比率荧光传感器。核黄素的浓度与I_(520)/I_(460)的荧光比值呈现线性相关关系,线性范围为0.15~7.0μmol/L,检出限为8.48 nmol/L。相比于直接荧光检测核黄素的方法,此方法具有特异性、抗背景干扰性等优点,可应用于检测果汁中的核黄素。  相似文献   
3.
建立了测定黄瓜和土壤中春雷霉素残留的固相萃取/高效液相色谱-串联质谱(SPE/HPLC-MS/MS)方法。黄瓜和土壤样品分别经1%甲酸的甲醇、0.5%甲酸水提取后,采用MCX固相萃取柱净化,以Waters Xbridge BEH Amide色谱柱分离,0.2%甲酸水-乙腈溶液进行梯度洗脱,电喷雾正离子(ESI+)模式电离,多反应监测(MRM)模式检测,基质匹配标准曲线外标法定量。该方法灵敏、准确、简单快速、重复性好,在2~250μg/L浓度范围内,不同基质中春雷霉素的线性相关系数均大于0.999,检出限为0.002 mg/kg,定量下限为0.008 mg/kg;在0.008、0.040、0.200、0.400 mg/kg 4个加标水平下,春雷霉素在黄瓜和土壤样品中的平均回收率为77.5%~97.0%,相对标准偏差为2.6%~10.7%,能够满足黄瓜及土壤中春雷霉素残留的检测需求。应用该法对田间样品进行检测,结果表明,春雷霉素在黄瓜中的残留量不超过0.053 mg/kg,小于我国规定的黄瓜中最大残留限量(0.2 mg/kg);土壤中春雷霉素的残留量不超过0.013 mg/kg。  相似文献   
4.
采用3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷(AAAPTS)为单体,通过“一锅法”制备了一种氨基官能化介孔二氧化硅吸附材料用于吸附As(V)。通过傅立叶红外光谱(FT-IR)、扫描电镜(SEM)和氮气吸附-脱附分析对材料进行表征,并对吸附条件进行优化。结果表明,氨基官能化介孔二氧化硅在吸附环境为pH 3,温度25℃,吸附时间30 min时达到最佳吸附效果,其饱和吸附量为93.74 mg/g。动力学吸附、等温吸附实验结果表明,合成的材料符合伪二阶动力学模型且属于单层吸附的化学结合过程。本研究为去除环境水样品中的As(V)提供了潜在吸附材料。  相似文献   
5.
采用连续单频1.56μm激光光源作为泵浦光,通过周期极化铌酸锂晶体外腔倍频过程实验制备出位于原子吸收波线的780nm明亮振幅压缩态光场。在利用2个模清洁器过滤基频光的强度噪声、使之在分析频率4MHz处达到散粒噪声的基础上,利用谐振倍频获得输出功率为10mW、转换效率达40%的倍频光,实测的780nm明亮振幅压缩光的压缩度为0.6dB。  相似文献   
6.
稳定的欧姆接触对半导体器件的正常工作起到至关重要的作用.目前市场上主要采用金/金锗镍合金作为n型GaAs的电极材料,工艺复杂,成本高昂.本文研究了一种新型的、廉价的适用于半绝缘GaAs的欧姆接触电极材料Ag/Co掺杂的非晶碳膜及其制备过程,以便于读者对半导体器件的制备工艺和流程有所了解.  相似文献   
7.
保健食品作为一种特定的食品种类,能调节人体的机能,适用于特定人群食用.但是在保健食品中添加化学药物和非法添加物的现象也层出不穷,因此迫切需要建立多指标的有效检测方法,为保健食品的质量安全提供技术保障.高效的前处理方法和高灵敏的分析方法为检测非法添加物提供了有效的技术手段.综述了近三年来溶剂萃取和固相萃取样品前处理方法,以及高效液相色谱、实时直接分析质谱、表面增强拉曼光谱及色谱-质谱串联技术等分析方法在微量及痕量非法添加物检测中的应用,为进一步研究建立高效简便的前处理方法和检测新方法、新技术提供理论参考.  相似文献   
8.
由于抗生素的不当使用和细菌多药耐药的出现, 迫切需要开发新的抗菌剂. 本文制备了具有光热转换性能的正电荷半导体高分子材料及具有协同抗菌活性的半导体聚合物纳米粒子(SP-PPh3 NPs). SP-PPh3 NPs的光热转化效率为43.8%. 带正电荷的SP-PPh3 NPs可以附着在细菌上, 有助于将热量有效传递给细菌. 在热和正电荷的协同作用下, SP-PPh3 NPs对革兰氏阴性大肠杆菌(E. coli)和革兰氏阳性金黄色葡萄球菌(S. aureus)均具有抗菌活性, 其对二者的体外抑菌率分别为99.9%和98.6%. 此外, SP-PPh3 NPs具有良好的生物相容性, 对小鼠的主要器官几乎无副作用. 对细菌感染的小鼠皮肤伤口用SP-PPh3 NPs治疗12 d后, 伤口可以很好地愈合.  相似文献   
9.
在SDS-PVP水溶液中采用N2H4•H2O还原CuSO4, 在pH (10±0.5), (40±1.0) ℃条件下反应55 min得到橙色Cu2O溶胶, 离心分离产物经XRD鉴定为Cu2O立方晶系晶体; SEM和TEM表明该法获得的晶体为形状规整、粒径分布窄的Cu2O中空亚微球, 并证实系由大量10 nm量级的原级Cu2O纳米晶粒组装而成. 根据实验事实推断, SDS-PVP项链状软团簇提供了“双重软模板”功能, 借助独特的“模板诱导两级组装”作用一锅法合成了Cu2O中空亚微球. Cu2O中空亚微球生长的可能途径为: 首先, 项链状软团簇中的SDS束缚胶束作为第一重软模板, 诱导一级组装10 nm量级的原级Cu2O纳米晶粒; 然后, 软团簇中立体桥联SDS束缚胶束的PVP链节作为第二重软模板, 诱导一定空间范围内的原级Cu2O纳米晶粒长大并进一步聚集/二级组装, 经一锅法合成得到次级Cu2O中空亚微球. 实验结果证明该一锅法温和、简便、快捷, Cu2O中空亚微球的粒径分布窄.  相似文献   
10.
采用有机凝胶法结合固相烧结技术制备了Sm0.9Sr0.1Al0.5Mn0.5O3-δ (SSAM9155)新型导电陶瓷. 通过TG/DTA, FTIR, XRD, SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制. 结果表明, 凝胶前驱体在900 ℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体; 高温烧结制得的SSAM9155陶瓷的电导率取决于p型电导, 电导率随温度的升高而增大, 导电行为符合p型小极化子跳跃机制; 随烧结温度的升高或保温时间的延长, SSAM9155陶瓷的电导率和相对密度都先增大后减小, 1600 ℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%), 该样品在空气和氢气气氛中850 ℃时的电导率分别为8.21和1.26 S•cm-1, 表观活化能分别为0.265和0.465 eV. 具有较高电导率的Sr, Mn掺杂的SmAlO3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号