首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
数学   12篇
  2011年   8篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有12条查询结果,搜索用时 47 毫秒
1.
Some closed-form solutions are provided for the nonhomogeneous Yakubovich-conjugate matrix equation with X and Y being unknown matrices. The presented solutions can offer all the degrees of freedom which is represented by an arbitrarily chosen parameter matrix. The primary feature of the solutions is that the matrices F and R are not restricted to be in any canonical form, or may be even unknown a priori. One of the solutions is neatly expressed in terms of controllability matrices and observability matrices.  相似文献   
2.
Some concepts, such as divisibility, coprimeness, in the framework of ordinary polynomial product are extended to the framework of conjugate product. Euclidean algorithm for obtaining greatest common divisors in the framework of conjugate product is also established. Some criteria for coprimeness are established.  相似文献   
3.
Iterative solutions to the extended Sylvester-conjugate matrix equations   总被引:1,自引:0,他引:1  
This paper is concerned with iterative solutions to a class of complex matrix equations. By applying the hierarchical identification principle, an iterative algorithm is constructed to solve this class of complex matrix equations. The range of the convergence factor is given to guarantee that the proposed algorithm is convergent for arbitrary initial matrix by applying a real representation of a complex matrix as a tool. By using some properties of the real representation, a sufficient convergence condition that is easier to compute is also given by original coefficient matrices. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   
4.
Two operations are introduced for complex matrices. In terms of these two operations an infinite series expression is obtained for the unique solution of the Kalman-Yakubovich-conjugate matrix equation. Based on the obtained explicit solution, some iterative algorithms are given for solving this class of matrix equations. Convergence properties of the proposed algorithms are also analyzed by using some properties of the proposed operations for complex matrices.  相似文献   
5.
6.
In this paper we propose two new operators for complex polynomial matrices. One is the conjugate product and the other is the Sylvester-conjugate sum. Then some important properties for these operators are proved. Based on these derived results, we propose a unified approach to solving a general class of Sylvester-polynomial-conjugate matrix equations, which include the Yakubovich-conjugate matrix equation as a special case. The complete solution of the Sylvester-polynomial-conjugate matrix equation is obtained in terms of the Sylvester-conjugate sum, and such a proposed solution can provide all the degrees of freedom with an arbitrarily chosen parameter matrix.  相似文献   
7.
An iterative algorithm is constructed to give a common solution to a group of complex matrix equations. By using the proposed algorithm, the existence of a common solution can be determined automatically. When a common solution exists for this group of matrix equations, it is proven by using a real inner product in complex matrix spaces as a tool that a solution can be obtained within finite iteration steps for any initial values in the absence of round-off errors. The algorithm is also generalized to solve a more general case. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   
8.
With the help of the Kronecker map, a complete, general and explicit solution to the Yakubovich matrix equation VAVF=BW, with F in an arbitrary form, is proposed. The solution is neatly expressed by the controllability matrix of the matrix pair (A,B), a symmetric operator matrix and an observability matrix. Some equivalent forms of this solution are also presented. Based on these results, explicit solutions to the so-called Kalman–Yakubovich equation and Stein equation are also established. In addition, based on the proposed solution of the Yakubovich matrix equation, a complete, general and explicit solution to the so-called Yakubovich-conjugate matrix is also established by means of real representation. Several equivalent forms are also provided. One of these solutions is neatly expressed by two controllability matrices, two observability matrices and a symmetric operator matrix.  相似文献   
9.
This paper is concerned with solutions to the so-called coupled Sylveter-conjugate matrix equations, which include the generalized Sylvester matrix equation and coupled Lyapunov matrix equation as special cases. An iterative algorithm is constructed to solve this kind of matrix equations. By using the proposed algorithm, the existence of a solution to a coupled Sylvester-conjugate matrix equation can be determined automatically. When the considered matrix equation is consistent, it is proven by using a real inner product in complex matrix spaces as a tool that a solution can be obtained within finite iteration steps for any initial values in the absence of round-off errors. Another feature of the proposed algorithm is that it can be implemented by using original coefficient matrices, and does not require to transform the coefficient matrices into any canonical forms. The algorithm is also generalized to solve a more general case. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   
10.
This paper is concerned with iterative solutions to a class of complex matrix equations, which include some previously investigated matrix equations as special cases. By applying the hierarchical identification principle, an iterative algorithm is constructed to solve this class of matrix equations. A sufficient condition is presented to guarantee that the proposed algorithm is convergent for an arbitrary initial matrix with a real representation of a complex matrix as tools. By using some properties of the real representation, a convergence condition that is easier to compute is also given in terms of original coefficient matrices. A numerical example is employed to illustrate the effectiveness of the proposed methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号