首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
力学   5篇
综合类   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
粘塑性薄壁管中复合应力波的传播特性研究   总被引:3,自引:0,他引:3  
以本构关系一般理论为基础,导出了计及材料功硬化效应和应变率硬化效应的粘塑性薄壁管的本构关系及管中复合应力波的控制方程,应用有限差分方法研究了在压扭复合冲击载荷作用下粘塑性薄壁管中复合应力波的传播特性与演化规律,分析了复合应力波的耦合效应以及薄壁管中粘塑性参数和功硬化效应对复合应力波传播与演化规律的影响,并对有关现象进行了分析和解释。  相似文献   
2.
绝热剪切带是金属材料在高应变率载荷下常见的一种失效模式。利用霍普金森压杆装置,对双相钢Fe-24.86Ni-5.8Al-0.38C不同微结构的帽形样品施加冲击载荷,研究它的动态剪切变形行为及微结构机理。先通过对固熔处理得到的粗晶态样品进行大应变冷轧获得冷轧态样品,再使用透射电子显微镜和扫描电子显微镜表征两种样品冲击前后微结构的变化差异。结果表明,双相钢FeNiAlC拥有较优异的动态剪切性能,剪切强度达1.3 GPa,均匀剪切应变达1.5。变形前,材料由奥氏体相和马氏体相构成,马氏体体积分数约为20%。变形过程由位错滑移和孪生变形主导,但因应变速率较高致使马氏体相变被抑制。不同微结构样品内均形成绝热剪切带,带内发生动态再结晶,形成超细晶粒,平均晶粒尺寸约300 nm,且剪切带内不发生相变;冷轧态剪切带宽度的实验值(14.6 μm)与理论计算值(12.3 μm)较好吻合,而粗晶态剪切带宽度的实验值(14.6 μm)与理论计算值(30 μm)相差甚远,初步分析可能是因为粗晶态样品应变较大基本不满足完全绝热的理论条件。在变形过程中,粗晶态因塑性变形做功产生的绝热温升高达720 K,而冷轧态的只有190 K。通过实验结果与热塑模型分析,得出绝热温升不是形成绝热剪切带的唯一因素,而应考虑材料的微观结构和局部化变形等的共同影响。  相似文献   
3.
中高熵合金是近二十年提出的一种多主元金属合金,打破了传统合金以1-2种金属元素为主元的设计理念.中高熵合金由于多主元的成份设计提高了材料的构型熵和混合熵,展现出许多奇特的组织结构和性能.相比铝合金、钛合金以及钢铁等传统金属,中高熵合金表现出优异的准静态力学性能和动态力学性能等.在高应变速率下,材料的塑性变形受到更多因素的影响,如应变率、温度等.本文首先介绍中高熵合金动态力学性能(包括动态剪切、夏比冲击,动态层裂强度,侵彻自锐性等)的相关研究,并总结了中高熵合金动态变形的微结构变形机理;随后综合概括了中高熵合金中绝热剪切带行为和温度效应的研究现状;最后对中高熵合金在冲击动力学领域的应用和研究趋势提出展望.  相似文献   
4.
径向惯性对薄壁圆管中弹塑性复合应力波传播的影响   总被引:2,自引:0,他引:2  
弹塑性压扭复合应力波在薄壁管中的传播特性,已得到较为深入的研究,但为得到简单波解,大部分研究忽略了薄壁圆管中与径向惯性有关的周向应力σθ的影响。该文采用便于动态数值方法应用的增量型弹塑性本构关系,应用有限差分数值方法,计算了考虑径向惯性效应的弹塑性薄壁管中复合应力波的演化规律和传播特性,并与无径向惯性效应的计算结果作了对比,结果表明薄壁管中的径向惯性效应对弹塑性复合应力的传播有较大的影响。  相似文献   
5.
金属损伤演化方程和层裂准则的确定   总被引:9,自引:0,他引:9  
文中由唯象分析和细观统计相结合的方法给出了一种新的损伤演化方程.对两种金属,在试验结果和内变量理论的基础上得到了计及损伤的热-粘塑性本构关系.用有限差分数值计算研究了应力波传播规律、损伤发展及层裂.通过自由面速度历史的数值模拟,并基于计算结果与试验结果间的最佳一致性,得到了损伤演化方程和层裂准则中的材料参数.  相似文献   
6.
杜欣  袁福平  熊启林  张波  阚前华  张旭 《力学学报》2022,54(8):2152-2160
高熵合金未来有望应用于航空航天和深海探测等领域, 并且不可避免地会受到极端冲击载荷作用, 甚至会发生层裂. 本文采用分子动力学(MD)方法, 研究了CoCrFeMnNi单晶高熵合金冲击时的冲击波响应、层裂强度以及微观结构演化的取向相关性和冲击速度相关性. 模拟结果表明, 在沿[110]和[111]方向进行冲击时产生了弹塑性双波分离现象, 且随着冲击速度的增加呈现出先增强后减弱的变化趋势, 但在沿[100]方向冲击时未出现双波分离现象. 在冲击过程中, 大量无序结构产生且随冲击速度的增加而增加, 使得层裂强度随冲击速度的增加而减小. 此外, 层裂强度也具有取向相关性. 沿[100]方向冲击时产生了大量体心立方(BCC)中间相, 抑制了层错以及无序结构的产生, 使得[100]方向的层裂强度最高; 层裂初期微孔洞形核区域无序结构含量大小关系的转变, 使得[111]方向的层裂强度在冲击速度较低时(Up≤0.9 km/s)大于[110]方向, 而在冲击速度较大时(Up≥1.2 km/s)略小于[111]方向. 研究成果有望为 CoCrFeMnNi高熵合金在极端冲击条件下的应用提供理论支撑和数据积累.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号