首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   5篇
化学   5篇
综合类   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
氮氧化物NO_x(NO和NO_2)对大气的污染日益严重,主要表现为形成酸雨、导致光化学烟雾和产生温室效应等,严重危害人类健康.氨气选择性催化还原(NH_3-SCR)NO_x是目前最有效的固定源NO_x消除技术.工业中常用的催化剂主要是V_2O_5-WO_3/TiO_2,但其活性组分V_2O_5有毒,且存在氧化能力较强和操作温度窗口过窄等缺点.开发新型环境友好的非钒基NH_3-SCR催化剂体系己成为NO_x催化净化领域的研究热点.CeO_2在稀土市场中占有很大比重且相对廉价,同时还具有优异的氧化-还原及储氧性能,因此开发Ce基SCR脱硝催化剂具有非常好的发展前景.对于NH_3-SCR反应,催化剂必须同时具有酸性位和氧化还原中心.酸性位有利于还原剂NH_3的吸附与活化,而氧化还原中心可以促使氧化剂和还原剂之间发生反应.对于低温SCR催化剂,表面酸性适中即可,氧化还原性能起决定作用;而对于中高温SCR催化剂,不仅要提高其表面酸性以保证足够的NH_3吸附量,同时还要控制其表面氧化性不宜太强,否则在高温段NH_3氧化,N_2选择性下降,NO转化率降低.CeO_2具有一定碱性以及优异的氧化还原性能,因此在高温阶段CeO_2催化剂上易发生NH_3深度氧化,高温NH_3-SCR活性差,温度窗口窄.为了拓宽CeO_2基催化剂的温度窗口,改善其催化性能,有必要调整CeO_2的氧化还原性能和酸碱性能.过渡金属磷酸盐或焦磷酸盐具有特殊的表面酸性和氧化还原性,被广泛应用于多种催化反应.考虑到过渡金属磷酸盐或焦磷酸盐表面同时具有酸性位和氧化还原中心,因而可用于NH_3-SCR反应.最近本课题组通过水热法制备了一种环境友好的Ce-P-O催化剂,该催化剂在较宽的温度范围(300-550℃)内表现出较高的催化NO转化能力,同时具有较强的抗碱和耐硫能力,显示出很好的应用前景.此外,硫酸盐和镍盐修饰能有效改善铈锆固溶体催化剂的NH_3-SCR性能:镍修饰增强了铈锆固溶体的Lewis酸性,有利于提高催化剂的低温活性,而硫酸盐改性提高了催化剂的Bronsted酸性,因此有利于催化剂高温下吸附NH_3,抑制了NH_3的过度氧化.另外,磷酸盐修饰能提高铈锆固溶体催化剂NH_3-SCR反应活性.然而,有关催化剂结构系统表征鲜见报道,催化剂的构效关系阐述不够详细.本文采用浸渍法将不同量的H_3PO_4负载于CeO_2上制备了H_3PO_4修饰的CeO_2催化剂,发现H_3PO_4修饰能显著改善CeO_2催化剂的NH_3-SCR性能.本文对催化剂结构进行了系统表征,详细探讨了H_3PO_4促进作用的原因.NH_3-SCR活性测试显示,H_3PO_4修饰后,催化剂活性显著提高,部分抑制了高温时CeO_2催化剂上NH_3的直接氧化,提高了SCR反应的选择性,从而拓宽了温度窗口.X射线衍射、红外光谱和拉曼光谱表征结果发现,随着H_3PO_4负载量增加,样品中CeO_2相逐渐减少,而新相如CeP_2O_7和Ce(PO_3)_4等逐渐增多,多磷酸根阴离子可能是表面酸性增强的关键因素.NH_3程序升温脱附和吸附吡啶红外光谱结果表明,随着H_3PO_4修饰量的增加,样品的酸强度逐渐增大,Lewis酸性逐渐减弱至消失,而Bronsted酸性逐渐增强.增强的Bronsted酸性可能归因于H_3PO_4修饰后样品表面不断增加的P-OH基团.相对于Lewis酸,Bronsted酸性位氧化能力更弱,可以抑制高温下NH_2(ads)继续脱氢,避免了NH_3深度氧化.程序升温还原测试结果表明,H_3PO_4修饰后,各还原峰向高温偏移,偏移量随H_3PO_4负载量增加而增加.这说明H_3PO_4修饰后CeO_2的氧化还原能力降低,抑制了高温下NH_3的过度氧化.因此,H_3PO_4的修饰使得CeO_2催化剂高温NH_3-SCR活性和N_2选择性大幅提高.综上所述,H_3PO_4-CeO_2样品优异的脱硝催化活性可能归因于H_3PO_4修饰后催化剂酸性,尤其是Bronsted酸性的增强以及氧化还原性的降低.  相似文献   
2.
通过N-丁基-N-甲基哌啶双(氟磺酰)亚胺盐离子液体和双(氟磺酰)亚胺锂盐修饰了Li|Li10GeP2S12界面,并研究了界面的改性效果.研究结果表明,在界面处原位生成一层致密的固体电解质界面膜(SEI),具有一定流变性的离子液体可渗透到Li10GeP2S12晶粒内部;在0.1 mA/cm2的电流密度下,界面改性后的Li|Li10GeP2S12|Li对称电池可稳定循环1500 h以上,极化电压仅为30 mV.在2.5~3.6 V电压范围内,Li|Li10GeP2S12|LiFePO4电池在0.2C倍率下充放电循环的首次放电比容量为148.1 mA·h/g,库仑效率为95.8%,经过30次循环后容量保持率为90.1%.  相似文献   
3.
采用水热法制备了CdxZn1-xS固溶体光催化剂。通过XRD、UV-Vis漫反射、比表面积对催化剂进行了表征。研究了以葡萄糖为电子给体的CdxZn1-xS光催化分解NaCl盐水可见光制氢反应。结果表明:NaCl的存在提高了葡萄糖在催化剂表面的吸附。相比纯水体系,NaCl盐水体系中CdxZn1-xS光催化制氢效率明显提高。葡萄糖初始浓度对反应速率的影响符合Langmuir-Hinshelwood关系式。  相似文献   
4.
天然气资源丰富、价格低廉,因而被广泛用作燃料.天然气的主要成分是甲烷,未燃烧完的甲烷所产生的温室效应是二氧化碳的21倍,所带来的环境问题引起越来越多的研究者关注.但甲烷是最稳定的非极性有机小分子,C–H键能高达434 k J/mol,大多数催化剂很难将其在很低的温度在完全转化.C?H键的活化解离是催化甲烷燃烧最关键的一步,而活化C–H键方式主要有两大类:(1)均裂活化机制,一般用在贵金属催化剂上;(2)异裂活化机制,往往发生在过渡金属氧化物上.比较而言,贵金属催化剂,尤其是Pd,往往具有更优异的低温催化活性,但价格昂贵,从而限制了其广泛使用.因此,开发更加高效的非贵金属催化剂用于废气中未转化的甲烷完全氧化是亟待解决的问题.含有Co和Ni的尖晶石氧化物具有良好的催化甲烷燃烧活性,有望代替贵金属催化剂,但要求在低于400°C完全转化,仍具有一定挑战.另一方面,Ni~(3+)和Co~(3+)哪个是活性中心,还具有一定争议.因此,我们通过水热法和共沉淀法合成一系列表面暴露不同数目的Ni~(3+)和Co~(3+)来探究表面高氧化态Co和Ni跟活性之间的关系.XRD和TEM结果表明,相比于水热法合成的水热法合成的发生明显的晶格收缩现象,这是由于在尖晶石体相中大量小半径Ni~(3+)(0.053 nm)取代了大半径Co~(3+)(0.055 nm)所致.同时还发现,水热合成的尖晶石具有多孔纳米片层结构,相比于共沉淀法合成的尖晶石具有更大的比表面积,催化活性也更高.XPS分析发现,催化甲烷燃烧的活性随着表面含量增加而提高.结合文献分析和本文的实验结果推测,表面的Ni~(3+)和Co~(3+)都可作为解离C?H键的活性中心.水热60小时合成的纳米片表面的数量最多,所以具有最优异的催化性能,大约在280°C甲烷转化50%.当加入10%(体积比)的水,在高空速工况下对催化活性影响不大,主要是因为长时间水热合成的尖晶石表面缺陷少,对水的吸附弱,这可通过O 1s图谱得到印证.总之,这些研究结果能够给甲烷活化和开发更加高效和低成本催化剂一些启示.  相似文献   
5.
以水滑石为前驱体,通过流电沉积法制备了Pt负载型催化剂。在该催化剂中,贵金属Pt具有良好的分散性。此外,以CO氧化为探针反应考查了不同Pt负载量对CO催化氧化性能的影响。结果表明,当Pt的负载量为5%时,催化剂对CO的完全转化温度仅为90℃。  相似文献   
6.
天然气资源丰富、价格低廉, 因而被广泛用作燃料. 天然气的主要成分是甲烷, 未燃烧完的甲烷所产生的温室效应是二氧化碳的 21 倍, 所带来的环境问题引起越来越多的研究者关注. 但甲烷是最稳定的非极性有机小分子, C–H 键能高达434 kJ/mol, 大多数催化剂很难将其在很低的温度在完全转化. C–H 键的活化解离是催化甲烷燃烧最关键的一步, 而活化C–H 键方式主要有两大类: (1) 均裂活化机制, 一般用在贵金属催化剂上; (2) 异裂活化机制, 往往发生在过渡金属氧化物上. 比较而言, 贵金属催化剂, 尤其是 Pd, 往往具有更优异的低温催化活性, 但价格昂贵, 从而限制了其广泛使用. 因此, 开发更加高效的非贵金属催化剂用于废气中未转化的甲烷完全氧化是亟待解决的问题.含有 Co 和 Ni 的尖晶石氧化物具有良好的催化甲烷燃烧活性, 有望代替贵金属催化剂, 但要求在低于 400 °C 完全转化, 仍具有一定挑战. 另一方面, Ni3+和 Co3+哪个是活性中心, 还具有一定争议. 因此, 我们通过水热法和共沉淀法合成一系列表面暴露不同数目的 Ni3+和 Co3+来探究表面高氧化态 Co 和 Ni 跟活性之间的关系. XRD 和 TEM 结果表明, 相比于水热法合成的 Co3O4, 水热法合成的 NiCo2O4发生明显的晶格收缩现象, 这是由于在尖晶石体相中大量小半径 Ni3+(0.053 nm) 取代了大半径 Co3+(0.055 nm) 所致. 同时还发现, 水热合成的尖晶石具有多孔纳米片层结构, 相比于共沉淀法合成的尖晶石具有更大的比表面积, 催化活性也更高. XPS 分析发现, 催化甲烷燃烧的活性随着表面 (Ni3++ Co3+) 含量增加而提高. 结合文献分析和本文的实验结果推测, 表面的 Ni3+和 Co3+都可作为解离 C–H 键的活性中心. 水热 60 小时合成的 NiCo2O4纳米片表面 Ni3++ Co3+的数量最多, 所以具有最优异的催化性能, 大约在 280 °C甲烷转化 50%. 当加入 10%(体积比) 的水, 在高空速工况下对催化活性影响不大, 主要是因为长时间水热合成的尖晶石表面缺陷少, 对水的吸附弱, 这可通过 O 1s 图谱得到印证. 总之, 这些研究结果能够给甲烷活化和开发更加高效和低成本催化剂一些启示.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号