首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   122篇
  国内免费   22篇
化学   44篇
晶体学   3篇
力学   7篇
综合类   8篇
数学   21篇
物理学   204篇
  2023年   5篇
  2022年   4篇
  2021年   6篇
  2020年   11篇
  2019年   15篇
  2018年   9篇
  2017年   3篇
  2016年   9篇
  2015年   7篇
  2014年   23篇
  2013年   13篇
  2012年   18篇
  2011年   17篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   14篇
  2006年   10篇
  2005年   5篇
  2004年   15篇
  2003年   10篇
  2002年   8篇
  2001年   1篇
  2000年   7篇
  1999年   11篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1974年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
1.
当激光束经过透明散射介质时,通常会产生散斑光场。利用反馈波前调控技术对入射光束的相位进行主动调控,可将散斑整形成聚焦光斑。当存在强噪声干扰时,已有的反馈控制算法大多存在调控效果不理想的问题,故提出一种适用于强噪声环境的基于基因梯度粒子群算法的反馈波前调控方法。该方法不过分依赖以往的优化信息,而是结合梯度快速搜索和基因交叉突变功能来实现噪声环境下对激光束的调控。通过与传统算法进行比较,分析基因梯度粒子群的初始参数(调整因子、变异率和交叉率等)和搜索能力对调控效果的影响。结果表明,在明亮室内的强背景杂散光噪声下,基因梯度粒子群算法能在较少的迭代次数下实现更好的聚焦效果。  相似文献   
2.
进入新时代的医用物理课程,进行课程思政教学.目前越来越多的教育工作者加入到课程思政建设中,如何将思想政治教育贯穿医用物理学教学全过程,将教书育人的内涵落实在课堂教学的主渠道上来,让医用物理学课程上出思政味道,突出育人价值,让立德树人做到润物无声,作者对此做了有益的实践与尝试.  相似文献   
3.
谢丽  钟哲强  张彬 《光学学报》2021,(2):149-156
变形镜在长期工作的过程中,压电陶瓷驱动器因累积疲劳效应会导致其失效,从而导致校正性能的降低。从变形镜的影响函数出发,将失效驱动器的电压置零,采用有限元方法建立变形镜疲劳失效模型,重点分析畸变波前的形态分布、入射光束的类型和驱动器的排布方式等对校正能力的影响。实验结果表明,在部分驱动器失效的情况下,变形镜应当根据高斯型随机畸变波前的形态分布进行失效分析。从低频部分来看,在第1圈驱动器失效的情况下,变形镜对三种入射光束的校正效果几乎相同,当驱动器失效位置在其他圈数时,变形镜对高斯光束的校正效果最差;从高频部分来看,在不同位置驱动器失效的情况下,变形镜对平顶高斯光束的校正效果最佳。  相似文献   
4.
化学工业生产中,用氢气为还原剂,通过选择性加氢可以制备多种重要化学品。5-羟甲基糠醛是重要的生物质基平台化合物,而5-甲基糠醛是用途广泛的化学品。由5-羟甲基糠醛加氢得到5-甲基糠醛是一条非常理想的路径,但是选择性活化C-OH非常困难。本文设计并制备了Pt@PVP/Nb2O5(PVP: 聚乙烯吡咯烷酮)催化剂,该催化体系巧妙地结合了位阻效应、氢溢流和催化剂界面的电子效应,系统研究了该催化剂对5-羟甲基糠醛选择性加氢制备5-甲基糠醛催化性能,在最优条件下,5-甲基糠醛的选择性可达92%。利用密度泛函理论计算研究了5-羟甲基糠醛选择性加氢制备5-甲基糠醛反应路径。  相似文献   
5.
张洋  李婷  袁晓东  熊召  徐旭  叶朗  周海  张彬 《物理学报》2015,64(2):24213-024213
在高功率固体激光器的终端光学组件内, 大口径薄型KDP (KH2PO4)晶体的精密装配和校准是实现惯性约束核聚变的关键技术之一. 为了达到晶体在线安装高效高精度的要求, 需要测量高功率激光三次谐波转换效率达到最高时的晶体相位匹配角分布. 本文针对Ⅰ/Ⅱ类大口径薄型KDP晶体三次谐波转换的方式, 根据晶体的非线性光学属性获得了晶体不同位置相位匹配角之间的关系; 根据激光束在晶体内的传输路径分析得到了晶体面形、相位匹配角与激光三次谐波转换效率达到最高时 晶体最佳偏转角之间的相互关系. 在此基础上, 建立了Ⅰ/Ⅱ类KDP晶体相位匹配角的理论预测模型, 并利用实验进行了验证和分析. 实验结果表明, 晶体相位匹配角的预测值与实验值之差在10.0 μrad以内, 验证了Ⅰ/Ⅱ类KDP晶体相位匹配角理论预测模型的正确性, 为获得晶体全口径相位匹配角分布提供了简单、高效的预测方法.  相似文献   
6.
运用浸渍吸附法制备了纳米级单分散Ag-SiO2无机复合抗菌材料,结合响应曲面方法,考察了Ag+浓度、反应时间和氨水添加量等因素对材料抗菌率的影响,考虑到材料制备成本,变色控制等多方面因素,选取了最优制备条件,实验结果表明:Ag+浓度为5.9×10-4 mol·L-1,氨水添加量为4.1 mL,反应时间为5.2 h时,材料有最佳的经济效益和抗菌性能,抗菌率达到91.7;.通过TEM、XRD、ICP和BET方法对材料的结构进行表征,结果表明:载体SiO2微球为无定形态;Ag-SiO2抗菌材料微球具有良好的分散性和稳定性,粒径尺寸均匀;Ag+成功负载于SiO2微球表面,负载量为8.10 mg·kg-1.  相似文献   
7.
向列相液晶被广泛应用于液晶显示中,但是由于杂质的存在,会导致液晶的驱动电压变大,增加能耗。 为了降低阈值电压和饱和电压,通常向液晶中添加纳米颗粒来提高电光性能。 本文利用水热法制备了表面粗糙和光滑的两种立方体Fe2O3纳米颗粒,其形貌均匀,尺寸约550 nm。 将二者分别掺杂到向列相液晶E7中,结果表明,粗糙立方体Fe2O3/E7复合体系具有比光滑立方体Fe2O3/E7复合体系和向列相液晶E7更优的电光性能,且在掺杂质量分数为0.4%时,其电光性能达到最优,阈值电压和饱和电压分别降低9.9%和11.6%,对比度增大80%,响应时间降低至6.0 ms。 这归因于粗糙立方体Fe2O3具有足够的表面积和表面所带电荷更多,所以会更易吸附体系中的杂质离子和减弱杂质离子的屏蔽作用,从而提高了电光性能。  相似文献   
8.
运用岩石地球化学方法,对云南腾冲土官寨矿区离子吸附型稀土矿床的地球化学特征进行研究。结果显示:风化层较基岩明显富集Al_2O_3, Fe_2O_3, FeO等,贫化CaO, Na_2O, MgO, K_2O等元素,绝大多数微量及稀土元素均有不同程度的富集;垂向上从上到下稀土含量总体呈现"低-高-低"的抛物线形态, Ce元素与其他元素之间发生了明显的分异现象,个别样品中表土层稀土含量较高且含矿层较厚可能是由于风化历史时期的构造沉降作用造成的;由半风化层到全风化层, REE元素均为迁入,其中∑LREE迁入程度较∑HREE高,与不同稀土元素的水解能力和黏土矿物吸附选择性有关,而由全风化层到表土层, REE元素则发生了不同程度的降低。  相似文献   
9.
运用溶胶-凝胶法制备出二氧化硅载体,采用液相浸渍法制备得到锌型复合无机抗菌材料.结合响应曲面方法,考察了Zn2+浓度、pH和Tb3+浓度对材料抗菌率的影响,选取了较优制备条件:Zn2+浓度为0.3 mol·L-1,pH值为9,Tb3+浓度为0.01 mol·L-1.以大肠杆菌为菌种,通过稀释涂布平板法,对材料进行抗菌性能检测,抗菌结果表明,掺杂Tb3+后材料抗菌率从76;提高到97;,较优样的最小杀菌浓度为5.5 g/L.通过XRD、FTIR、SEM、EDS和BET方法对材料的结构进行表征,结果表明:载体二氧化硅为无定形态,材料中主要的抗菌成分是纤锌矿结构的ZnO,且呈絮状和花瓣状生长,锌元素质量分数为16.96;,掺杂铽元素后材料的比表面积明显增大,增加了材料与细菌的接触面积,从而抗菌性能显著提高.  相似文献   
10.
杨钧兰  钟哲强  翁小凤  张彬 《物理学报》2019,68(8):84207-084207
在激光驱动的惯性约束聚变装置中,常采用多种束匀滑手段对焦斑的时空特性进行调控.光传输链路中涉及的光学元件众多、传输变换复杂,往往导致光传输模型复杂,且在运用衍射光学方法分析焦斑形态和特征时面临大量的数据处理和计算,致使出现计算量大、计算效率低等问题,亟需寻求快速而简便的新方法来描述焦斑的统计特征.本文利用光场特性的统计表征方法对靶面光场进行表征,采用圆型复数高斯随机变量直接描述靶面光场的统计特征,并基于典型焦斑评价参数对衍射光学方法和统计表征方法得到的远场焦斑进行了对比和分析.结果表明,采用衍射光学方法和统计表征方法获得的焦斑的瞬时特征基本一致,其时间积分的远场焦斑有所不同,但仍可进一步采用相关系数来表征其远场焦斑的时间变化特征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号