首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   2篇
  力学   5篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
根据风力机的基本理论和相似理论设计了一个翼型为SG6050,半径为1m的小型风力机叶片。运用结构仿生学原理,对所设计的风力机叶片进行了仿生物中轴铺层设计。通过模态实验与应变实验,比较了传统设计与仿生设计两种不同风力机叶片的力学性能。模态实验结果表明,基于仿生设计的叶片的前六阶固有频率比传统叶片的前六阶固有频率减少约8%;两种叶片的固有频率均满足设计要求;仿生设计的叶片几乎不会改变叶片的动态特性。而应变实验表明,仿生设计的叶片在各种工况下的应变均大于传统的叶片约10%~20%。新设计的叶片具有较好的柔性,有效减小了叶片的应力,提高了叶片的疲劳寿命。  相似文献
2.
将风力机叶片简化为绕轮毂旋转的变截面Euler-Bernoulli悬臂梁,基于Greenberg公式给出非线性气动力,建立叶片挥舞振动非线性控制方程.由于变截面梁的弯曲刚度和线密度是沿梁轴线变化的函数,无法给出模态函数解析式,论文提出使用假设模态法计算的模态函数,作为基函数对控制方程进行Galerkin截断,通过将挥舞振动分解为静态位移和动态扰动合成,对其进行动态响应分析,同时讨论了叶轮转速、风速和旋转位置对振动特性的影响.研究表明:(1)叶轮转速对叶片挥舞特性影响显著,风速和叶片转角对振动特性影响很小.(2)静态位移随风速增加而增大,大体上成线性关系,气动阻尼随风速增加而减小.(3)风速较低时,非线性挥舞振动表现为衰减振动,随着风速增加,振动由衰减振动演化为周期运动,再由周期运动演化为拟周期运动.  相似文献
3.
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.  相似文献
4.
Lagwise dynamic characteristics of a wind turbine blade subjected to unsteady aero- dynamic loads are studied in this paper. The partial differential equations governing the coupled longitudinal-transverse vibration of the blade with large bending deflection are obtained by ap- plying Hamilton's principle. The modal problem of the coupled vibration is handled by using the method of numerical integration of Green's function. Influences of the rotating speed, the pitch angle, the setting angle, and the aerodynamic loads on natural frequencies are discussed. Results show that: (I) Lagwise natural frequencies ascend with the increase of rotating speed; effects of the rotating speed on low-frequencies are dramatic while these effects on high-frequencies become less. (2) Influences of the pitch angle on natural frequencies are little; in the range of the normal rotating speed, the first frequency ascends with the increase of the absolute value of the pitch angle, while it is contrary to the second and third frequencies. (3) Effects of the setting angle on natural frequencies depend on the rotating speed; influences are not significant at low speed, while they are dramatic on the first frequency at high speed. (4) Effects of the aerodynamic loads on natural frequencies are very little; frequencies derived from the model considering aerodynamic loads are smaller than those from the model neglecting aerodynamic loads; relative errors of the results corresponding to two models ascend with the increase of the absolute value of the setting angle.  相似文献
5.
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying flexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号