首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   9篇
力学   1篇
物理学   4篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2001年   2篇
  1989年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.  相似文献   
2.
3.
4.
Training with blood flow restriction could lead to an effect on skin temperature. Additionally, this effect could be higher in people with lower physical fitness level due to their lower capacity of heat loss. The aim of this preliminary study was therefore to evaluate the effects of training experience on the acute and chronic thermal skin responses after performing exercise with and without blood flow restriction. The study included ten men, of these, five were trained. All subjects performed tests and re-tests for maximum strength (1 repetition maximum) through unilateral leg extensions (right thigh at 45 ± 6.7 kg and left thigh at 45.5 ± 8.1 kg, p > 0.05). The protocol consisted of four sets to concentric failure, with one-minute rest intervals between sets at an intensity corresponding to 40% of 1 RM. There were 7-day intervals between experimental sessions (150 mmHg versus unrestricted flow restriction). The thermal images were made before the protocol (pre), immediately after the end of the series (post), and 24 h afterward (post 24 h). When comparing temperature variation (Δ exercise and Δ 24 h) between groups, it was observed that the trained participants showed a greater drop in temperature 24 h after exercise with 150 mmHg restriction (confidence interval: 95% of Δ 24 h [−0.2 to −0.9 °C]) compared to untrained subjects (p = 0.006 and ES > 1.5, confidence interval: 95% Δ 24 h [−0.1 to 0.6 °C].) In conclusion, this preliminary study showed that training experience interferes with the chronic cutaneous thermal temperature of the anterior thigh when strength training associated with blood flow restriction 150 mmHg was performed.  相似文献   
5.
Pathological cardiac hypertrophy is characterized by an abnormal increase in cardiac muscle mass in the left ventricle, resulting in cardiac dysfunction. Although various therapeutic approaches are being continuously developed for heart failure, several studies have suggested natural compounds as novel potential strategies. Considering relevant compounds, we investigated a new role for Pterosin B for which the potential life-affecting biological and therapeutic effects on cardiomyocyte hypertrophy are not fully known. Thus, we investigated whether Pterosin B can regulate cardiomyocyte hypertrophy induced by angiotensin II (Ang II) using H9c2 cells. The antihypertrophic effect of Pterosin B was evaluated, and the results showed that it reduced hypertrophy-related gene expression, cell size, and protein synthesis. In addition, upon Ang II stimulation, Pterosin B attenuated the activation and expression of major receptors, Ang II type 1 receptor and a receptor for advanced glycation end products, by inhibiting the phosphorylation of PKC-ERK-NF-κB pathway signaling molecules. In addition, Pterosin B showed the ability to reduce excessive intracellular reactive oxygen species, critical mediators for cardiac hypertrophy upon Ang II exposure, by regulating the expression levels of NAD(P)H oxidase 2/4. Our results demonstrate the protective role of Pterosin B in cardiomyocyte hypertrophy, suggesting it is a potential therapeutic candidate.  相似文献   
6.
Parathyroid hormone (PTH) treatment was previously shown to improve cardiac function after myocardial infarction by enhancing neovascularization and cell survival. In this study, pressure overload-induced left ventricular hypertrophy (LVH) was induced in mice by transverse aortic banding (TAB) for 2 weeks. We subsequently evaluated the effects of a 2-week treatment with PTH or saline on compensated LVH. After another 4 weeks, the hearts of the mice were analyzed by echocardiography, histology, and molecular biology. Echocardiography showed that hearts of the PTH-treated mice have more severe failing phenotypes than the saline-treated mice following TAB with a greater reduction in fractional shortening and left ventricular posterior wall thickness and with a greater increase in left ventricular internal dimension. Increases in the heart weight to body weight ratio and lung weight to body weight ratio following TAB were significantly exacerbated in PTH-treated mice compared to saline-treated mice. Molecular markers for heart failure, fibrosis, and angiogenesis were also altered in accordance with more severe heart failure in the PTH-treated mice compared to the saline-treated mice following TAB. In addition, the PTH-treated hearts were manifested with increased fibrosis accompanied by an enhanced SMAD2 phosphorylation. These data suggest that the PTH treatment may accelerate the process of decompensation of LV, leading to heart failure.  相似文献   
7.
8.
Cardiac hypertrophy is a major risk factor for heart failure and leads to cardiovascular morbidity and mortality. Doxorubicin (DOX) is regarded as one of the most potent anthracycline antibiotic agents; however, its clinical usage has some limitations because it has serious cardiotoxic side effects such as dilated cardiomyopathy and congestive heart failure. Betulinic acid (BA) is a pentacyclic-cyclic lupane-type triterpene that has been reported to have anti-bacterial, anti-inflammatory, anti-vascular neogenesis, and anti-fibrotic effects. However, there is no study about its direct effect on DOX induced cardiac hypertrophy and apoptosis. The present study aims to investigate the effect of BA on DOX-induced cardiomyocyte hypertrophy and apoptosis in vitro in H9c2 cells. The H9c2 cells were stimulated with DOX (1 µM) in the presence or absence of BA (0.1–1 μM) and incubated for 24 h. The results of the present study indicated that DOX induces the increase cell surface area and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC), and Myosin Light Chain-2 (MLC2) in H9c2 cells. However, the pathological hypertrophic responses were downregulated after BA treatment. Moreover, phosphorylation of JNK, ERK, and p38 in DOX treated H9c2 cells was blocked by BA. As a result of measuring the change in ROS generation using DCF-DA, BA significantly inhibited DOX-induced the production of intracellular reactive oxygen species (ROS) when BA was treated at a concentration of over 0.1 µM. DOX-induced activation of GATA-4 and calcineurin/NFAT-3 signaling pathway were remarkably improved by pre-treating of BA to H9c2 cells. In addition, BA treatment significantly reduced DOX-induced cell apoptosis and protein expression levels of Bax and cleaved caspase-3/-9, while the expression of Bcl-2 was increased by BA. Therefore, BA can be a potential treatment for cardiomyocyte hypertrophy and apoptosis that lead to sudden heart failure.  相似文献   
9.
Right ventricular structure and function were characterized in spontaneously hypertensive rats (SHR) using non-invasive magnetic resonance imaging (MRI) techniques. These studies therefore complement previous reports preoccupied with left ventricular changes associated with this condition. Eight SHR and eight control normotensive Wistar-Kyoto (WKY) rats were each subdivided into equal age-matched groups of 8 and 12 weeks. The right ventricle was imaged through a series of twelve contiguous 1.37–1.75 mm transverse sections at twelve equally spaced time-points that covered both systole and most of diastole thereby completely reconstructing right ventricular anatomy. This gave measurements of right ventricular myocardial mass that were consistent through all twelve time-points in all four experimental groups throughout their cardiac cycles. However, spontaneous hypertension increased this right ventricular myocardial mass, as well as the end-diastolic (EDV) and end-systolic volumes (ESV). Although stroke volume (SV) was conserved, decreases in ejection fraction (EF), a positive shift in the relationship between SV and EDV, and reduced indices of systolic ejection rates in SHR rats compared with the age-matched normal WKY controls indicated significant systolic dysfunction. Additionally, reductions in the rates of diastolic relaxation suggested the onset of diastolic dysfunction. Thus, the non-invasive nature of MRI has made it possible for the first time to demonstrate alterations in structure of the right ventricle and in quantitative indicators of its systolic and diastolic function in the SHR model of hypertension.  相似文献   
10.
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号