首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7897篇
  免费   2387篇
  国内免费   164篇
化学   2500篇
晶体学   40篇
力学   1663篇
综合类   125篇
数学   273篇
物理学   5847篇
  2024年   1篇
  2023年   45篇
  2022年   158篇
  2021年   152篇
  2020年   209篇
  2019年   133篇
  2018年   156篇
  2017年   293篇
  2016年   327篇
  2015年   280篇
  2014年   533篇
  2013年   668篇
  2012年   458篇
  2011年   605篇
  2010年   430篇
  2009年   560篇
  2008年   648篇
  2007年   564篇
  2006年   558篇
  2005年   523篇
  2004年   475篇
  2003年   428篇
  2002年   352篇
  2001年   309篇
  2000年   269篇
  1999年   222篇
  1998年   212篇
  1997年   187篇
  1996年   151篇
  1995年   135篇
  1994年   97篇
  1993年   64篇
  1992年   64篇
  1991年   49篇
  1990年   36篇
  1989年   29篇
  1988年   11篇
  1987年   17篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Nanostructured metals have different mechanical, chemical, and physical behaviors in comparison with the microstructured ones. Numerous research studies demonstrated that the biological behavior of nanostructured metallic implants was improved significantly. Concerning the nanostructured metals, decreasing the corrosion rate and the releasing of hazardous ions from metallic implants, and thus increasing the biocompatibility of implants are due to improving the native oxide layer. In the present study, nanostructured 316L stainless steel (biomedical grade) was manufactured via equal channel angular pressing (ECAP) method. To do so, the 316L stainless steel (SS) was exposed to the ECAP operation for eight passes. The impact of the ECAP process on corrosion behavior of SS samples was evaluated through performing the electrochemical polarization corrosion tests in Ringer's solution. Scanning electron microscopy was employed to study the surface morphology of common SS and ECAPed SS sample after the electrochemical polarization tests. Moreover, the biological behavior of the samples was evaluated via cell culture using fibroblast cells. The corrosion test results revealed a substantial decrease of corrosion rate from 3.12 (coarse‐grained sample) to 0.42 μA cm?2 (for nanostructured). Furthermore, the cell proliferation in the interface of nanostructured sample and cell culture medium enhanced dramatically compared with the coarse‐grained one. The much better biological behavior of nanostructured SS sample in comparison with the coarse‐grained one is mostly due to the significant decrease of corrosion rate on the surface of SS samples, and the presence of much more chrome oxide on the surface of SS sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
The corrosion inhibition impact of two quinoline derivatives, viz tetrazolo [1,5‐a] quinoline‐4‐carbaldehyde ( TQC ) and (Z) ?5‐methyl‐N‐(tetrazolo [1,5‐a] quinolin‐4‐ylmethylene) thiazol‐2‐amine ( MTQT ), has been examined against mild steel in 1 M HCl solution using conventional weight loss, potentiodynamic polarization, linear polarization, electrochemical impedance spectroscopy, quantum chemical, and scanning electron microscopic studies. The experimental results have showed that TQC and MTQT revealed a good corrosion inhibition and that the inhibition efficiency increases with the increase of concentration of inhibitor to attain 94.54% for TQC and 99.25% for MTQT at 25 ppm. Polarization measurements suggest that TQC and MTQT act as a mixed‐type inhibitor. A synergism between inhibitors can be observed by polarization measurements. Electrochemical impedance spectroscopy measurements show an increase of the transfer resistance with the inhibitor concentration. Adsorption of TQC and MTQT on the mild steel surfaces in 1 N HCl solution follows the Langmuir adsorption isotherm model. Furthermore, quantum chemical calculations have been conducted using B3LYP functional and 6‐31G(d,p) basis set to complement the experimental evidences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   
4.
The inhibition effect of three naphthyridine derivatives namely 2-amino-4-(4-methoxyphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-1), 2-amino-4-(4-methylphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-2) and 2-amino-4-(3-nitrophenyl)-1,8-naphthyridine-3-carbonitrile (ANC-3) as corrosion inhibitors for N80 steel in 15% HCl by using gravimetric, electrochemical techniques (EIS and potentiodynamic polarization), SEM, EDX and quantum chemical calculation. The order of inhibition efficiency is ANC-1>ANC-2>ANC-3. Potentiodynamic polarization reveals that these inhibitors are mixed type with predominant cathodic control. Studied inhibitors obey the Langmuir adsorption isotherm. The quantum calculation is in good agreement with experimental results.  相似文献   
5.
A method to measure the stress field at the fiber tip in the fiber pull out test was proposed by using a digital gradient sensing technique. First, the principle of digital gradient sensing is introduced, and the non-contact optical system of digital gradient sensing developed. Then, a fiber reinforced composite model specimen, where a nail was inserted in epoxy resin to act as a fiber, was performed, and a pull out test was conducted on the specimen using the digital gradient sensing technique. Finally, the angular deflections contour at the fiber tip was obtained, and the stress intensity factor was extracted from the angular deflections. The results show that the stress intensity factor at the fiber tip extracted from the angular deflections agreed with the results calculated by the finite element method.  相似文献   
6.
Rubber composites with very high moduli at low elongation, high elongation at break and high ultimate breaking strength have been developed. The matrix was acrylonitrile butadiene rubber (NBR) and the hybrid (fibrous and particulate) reinforcements were short, fine pineapple leaf fiber (PALF) and carbon black. The amount of PALF was fixed at 10 parts (by weight) per hundred of rubber (phr) while that of carbon black was varied from 0 to 30 phr. Uniaxial NBR composites were prepared. Tensile strength, elongation at break, modulus and tear strength of the hybrid composites were characterized in both longitudinal (parallel to the fiber axis) and transverse (perpendicular to the fiber axis) directions. The addition of carbon black causes the slope of the early part of the stress–strain curve to increase and also extends breaking to greater strains. At carbon black contents of 20 phr and above, the stress–strain relation displays an upturn at high elongations, providing greater ultimate strength. Comparison with the usual carbon black filled rubber shows that the composite behavior at low strains is determined by the PALF, and at high strains by the carbon black. This high performance PALF-carbon black reinforced NBR shows great promise for engineering applications.  相似文献   
7.
In austenitic stainless steel nitrogen stabilizes the austenitic phase, improves the mechanical properties and increases the corrosion resistance. Nitrogen alloying enables to produce austenitic steels without the element nickel which is high priced and classified as allergy inducing. A novel production route is nitrogen alloying of CrMn‐prealloyed steel powder via the gas phase. This is beneficial as the nitrogen content can be adjusted above the amount that is reached during conventional casting. A problem which has to be overcome is the oxide layer present on the powder surface which impedes both the sintering process and the uptake of nitrogen. This study focuses on whether heat treatment under pure nitrogen is an appropriate procedure to enable sintering and nitrogen uptake by reduction of surface oxides. X‐ray photoelectron spectroscopy (XPS) in combination with scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometry (EDS) are used to investigate the surface of powdered FeMn19Cr17C0.4N heat treated under nitrogen atmosphere. The analyses showed reduction of iron oxides already at 500 °C leading to oxide‐free metallic surface zones. Mn and Cr oxides are reduced at higher temperatures. Distinct nitrogen uptake was registered, and successful subsequent sintering was reached. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
10.
The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless‐steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless‐steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm2 regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless‐steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless‐steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless‐steel columns were more resistant to etching than 304 stainless‐steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless‐steel columns used with this supercritical fluid chromatography technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号