全文获取类型
收费全文 | 100篇 |
免费 | 14篇 |
专业分类
化学 | 8篇 |
力学 | 20篇 |
综合类 | 5篇 |
数学 | 53篇 |
物理学 | 28篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2019年 | 5篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 2篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 4篇 |
2010年 | 6篇 |
2009年 | 4篇 |
2008年 | 10篇 |
2007年 | 8篇 |
2006年 | 7篇 |
2005年 | 4篇 |
2004年 | 6篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有114条查询结果,搜索用时 15 毫秒
1.
2.
A procedure for determining a few of the largest singular values and corresponding singular vectors of large sparse matrices is presented. Equivalent eigensystems are solved using a technique originally proposed by Golub and Kent based on the computation of modified moments. The asynchronicity in the computations of moments and eigenvalues makes this method attractive for parallel implementations on a network of workstations. Although no obvious relationship between modified moments and the corresponding eigenvectors is known to exist, a scheme to approximate both eigenvalues and eigenvectors (and subsequently singular values and singular vectors) has been produced. This scheme exploits both modified moments in conjunction with the Chebyshev semi-iterative method and deflation techniques to produce approximate eigenpairs of the equivalent sparse eigensystems. The performance of an ANSI-C implementation of this scheme on a network of UNIX workstations and a 256-processor Cray T3D is presented.This research was supported in part by the National Science Foundation under grant numbers NSF-ASC-92-03004 and NSF-ASC-94-11394. 相似文献
3.
YANGHU 《高校应用数学学报(英文版)》1995,10(2):133-140
In this paper we discuss the generalizations of the Kantorovich inequality and obtain some generalized Kantorovich inequalities in the sense of matrix norm. We further illustrate how to use these inequalities to determine the lower bound of relative efficiency of the parameter estimate in linear model. 相似文献
4.
5.
面向星敏感器的星模式识别算法 总被引:3,自引:0,他引:3
介绍了到目前为止出现的所有面向星敏感器的星模式识别算法,它们是概率统计算法、三角形算法、匹配组算法、网格算法、奇异值分解算法、神经网络算法和遗传算法,并分两组比较了它们的性能,给出了具有指导意义的结论。 相似文献
6.
ZHANG Zhenyue & ZHA Hongyuan
Department of Mathematics Zhejiang University Yuquan Campus Hangzhou China Department of Computer Science Engineering The Pennsylvania State University University Park PA U.S.A. 《中国科学A辑(英文版)》2004,47(6):908-920
We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of column-partitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning. 相似文献
7.
运用矩阵奇异值分解原理,分析了功率谱估计对探测海洋表面信息和硬目标信号的意义,对接收信号的自相关矩阵进行分解以提高谱估计的分辨率,并将处理后的方法对实测数据进行功率谱的估计,与处理前的回波谱图进行比较,实验证明,得出的奇异值分解方法可以改善多普勒回波功率谱的性能,满足高频地波雷达的目标探测要求。 相似文献
8.
The structure preserving rank reduction problem arises in many important applications. The singular value decomposition (SVD), while giving the closest low rank approximation to a given matrix in matrix L
2 norm and Frobenius norm, may not be appropriate for these applications since it does not preserve the given structure. We present a new method for structure preserving low rank approximation of a matrix, which is based on Structured Total Least Norm (STLN). The STLN is an efficient method for obtaining an approximate solution to an overdetermined linear system AX B, preserving the given linear structure in the perturbation [E F] such that (A + E)X = B + F. The approximate solution can be obtained to minimize the perturbation [E F] in the L
p norm, where p = 1, 2, or . An algorithm is described for Hankel structure preserving low rank approximation using STLN with L
p norm. Computational results are presented, which show performances of the STLN based method for L
1 and L
2 norms for reduced rank approximation for Hankel matrices. 相似文献
9.
1引言令R~(n×m)、OR~(n×n)、SR~(n×n)(SR_0~(n×n))分别表示所有n×m阶实矩阵、n阶实正交阵、n阶实对称矩阵(实对称半正定阵)的全体,A~ 表示A的Moore-Penrose广义逆,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵。R(A)表示A的列空间,N(A)表示A的零空间,rank(A)表示矩阵A的秩。对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与 相似文献
10.
In this paper, we have developed an algorithm based on singular value decomposition (SVD) for matrix. And the novel SVD algorithm with normalized period of cardiac cycles is presented. The results from real magnetocardiography (MCG) data processing show that the new algorithm is better than the standard one not only in suppressing noises, but also in providing high-fidelity MCG signals. 相似文献