首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3748篇
  免费   587篇
  国内免费   307篇
化学   1269篇
晶体学   36篇
力学   909篇
综合类   59篇
数学   768篇
物理学   1601篇
  2024年   6篇
  2023年   42篇
  2022年   66篇
  2021年   103篇
  2020年   123篇
  2019年   111篇
  2018年   114篇
  2017年   169篇
  2016年   176篇
  2015年   132篇
  2014年   210篇
  2013年   322篇
  2012年   246篇
  2011年   233篇
  2010年   224篇
  2009年   217篇
  2008年   223篇
  2007年   230篇
  2006年   210篇
  2005年   176篇
  2004年   165篇
  2003年   149篇
  2002年   128篇
  2001年   124篇
  2000年   84篇
  1999年   100篇
  1998年   78篇
  1997年   56篇
  1996年   57篇
  1995年   62篇
  1994年   56篇
  1993年   42篇
  1992年   39篇
  1991年   29篇
  1990年   22篇
  1989年   16篇
  1988年   21篇
  1987年   12篇
  1986年   8篇
  1985年   12篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1971年   2篇
排序方式: 共有4642条查询结果,搜索用时 15 毫秒
1.
基于欧拉-伯努利梁理论得到悬臂梁自由振动的振型函数。通过数值计算得出实验用的悬臂梁前五阶振型的节点位置及其与梁长的比值。考虑传感器对悬臂梁固有频率的影响,建立梁-传感器模型进行仿真分析并得出悬臂梁前五阶固有频率。基于节点位置和测点位置,在实验中选择激励点。将具体实验的结果与梁-传感器仿真模型结果进行对比,通过前五阶固有频率的误差分析,发现仿真分析结果与实验结果误差最高为 1.3%。研究完整地叙述了悬臂梁的模态测试流程,可为工程技术人员的模态测试起一定的指导作用。  相似文献   
2.
3.
Xu Cheng 《中国物理 B》2021,30(11):118103-118103
Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry, medical treatment, ocean dynamics to aerospace. Recently, graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability. However, these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics, due to the unsuitable Fermi level of graphene and the destruction of fiber structure, respectively. Here, we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber (Gr-PCF) with the non-destructive integration of graphene into the holes of PCF. This hybrid structure promises the intact fiber structure and transmission mode, which efficiently enhances the temperature detection ability of graphene. From our simulation, we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to ~ 3.34×10-3 dB/(cm·℃) when the graphene Fermi level is ~ 35 meV higher than half the incident photon energy. Additionally, this sensitivity can be further improved by ~ 10 times through optimizing the PCF structure (such as the fiber hole diameter) to enhance the light-matter interaction. Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.  相似文献   
4.
在砂土地层中,串囊式充气锚杆的研究还比较少,其承载特性及受力机理尚不明确。本文基于莫尔-库仑模型和Vesic圆孔扩张理论法,分别对圆柱体、球体、组合体、椭球体假设下的串囊式充气锚杆的扩大段进行计算分析。并将计算结果与试验得到的实测值进行对比。结果表明:四种形状假设中椭球体的形状假设理论值与实测值的误差最小,仅为8.35%。通过拟合试验数据,并引入与端阻力和侧摩阻力有关的两个系数对承载力公式进行修正,得到了抗拔承载力的经验公式。  相似文献   
5.
Instrumented indentation tests using both constant loading rate (CLR) and continuous stiffness measurement (CSM) operation modes were performed to investigate the deformation mechanism and their sensitivity to the deformation rate in semi-crystalline polymers through the quantitative analysis of load-depth loading and unloading curves. The strain rate was constant during the CSM tests, while the strain rate decreased with the increasing of loading time in CLR tests. The mechanical response mechanism of the semi-crystalline polymers to these tests was very complicated because of the combined effects of strain-hardening in the crystal phase and strain-softening in the amorphous phase. Results show that the loading index m reflects the strain-hardening or strain-softening response during indentation. When m > 2, the mechanical response was due to the strain-hardening, and when m < 2, the response was due to strain-softening. A method based on the measured contact hardness was proposed to obtain the unloading stiffness, and the other mechanical parameters could then be determined according to the unloading stiffness.  相似文献   
6.
Tianqi Li 《中国物理 B》2022,31(12):124208-124208
An aluminum (Al) based nearly guided-wave surface plasmon resonance (NGWSPR) sensor is investigated in the far-ultraviolet (FUV) region. By simultaneously optimizing the thickness of Al and dielectric films, the sensitivity of the optimized Al-based FUV-NGWSPR sensor increases from 183°/RIU to 309°/RIU, and its figure of merit rises from 26.47 RIU-1 to 32.59 RIU-1 when the refractive index of dielectric increases from 2 to 5. Compared with a traditional FUV-SPR sensor without dielectric, the optimized FUV-NGWSPR sensor can realize simultaneous improvement of sensitivity and figure of merit. In addition, the FUV-NGWSPR sensor with realistic materials (diamond, Ta2O5, and GaN) is also investigated, and 137.84%, 52.70%, and 41.89% sensitivity improvements are achieved respectively. This work proposes a method for performance improvement of FUV-SPR sensors by exciting nearly guided-wave, and could be helpful for the high-performance SPR sensor in the short-wavelength region.  相似文献   
7.
8.
奚畅  蔡志明  袁骏 《应用声学》2019,38(5):837-844
有效估计阵形是提高机动条件下拖线阵声呐探测性能的关键,流体力学类阵形估计方法稳定性和可靠性欠佳,导致其难以应用于工程实际,该文针对此问题提出一种基于拖线阵运动特性的阵形估计方法。利用稳态振荡响应公式计算拖船回转机动时拖线阵稳态阵形特性,将转向机动过程中阵上各点运动状态划分为若干阶段,进而依据偏微分方程特征线理论计算各阶段的分界时刻,探究阵上相邻两点的沿阵切线方向差变化规律,最后通过计算当前阵上各点的沿阵方向实现阵形估计。计算机仿真和海上实验数据验证表明算法可行且有效,与传统的流体力学类阵形估计方法相比具有更高的稳定性和更好的工程应用前景。  相似文献   
9.
赵金宇  杨剑群  董磊  李兴冀 《物理学报》2019,68(6):68501-068501
本文以~(60)Co为辐照源,针对3DG111型晶体管,利用半导体参数分析仪和深能级缺陷瞬态谱仪,研究高/低剂量率和有/无氢气浸泡条件下,电性能和深能级缺陷的演化规律.试验结果表明,与高剂量率辐照相比,低剂量率辐照条件下,3DG111型晶体管的电流增益退化更加严重,这说明该器件出现了明显的低剂量率增强效应;无论是高剂量率还是低剂量率辐照条件下,3DG111晶体管的辐射损伤缺陷均是氧化物正电荷和界面态陷阱,并且低剂量率条件下,缺陷能级较深;氢气浸泡后在高剂量率辐照条件下,与未进行氢气处理的器件相比,辐射损伤程度明显加剧,且与低剂量率辐照条件下器件的损伤程度相同,缺陷数量、种类及能级也相同.因此,氢气浸泡处理可以作为低剂量率辐射损伤增强效应加速评估方法的有效手段.  相似文献   
10.
实际工程中,热载荷多数具有短时和周期性特点,瞬态效应显著。目前的散热结构导热路径设计多基于稳态热传导模型,未考虑瞬态效应。本文提出了一种以区域温度控制函数作为设计目标的瞬态热传导问题的拓扑优化模型,能够实现在整个时间历程上特定区域内最高温度最小。使用伴随变量法,推导了目标函数关于设计变量的敏度计算格式。算例表明,基于本文优化模型获得的散热路径设计与基于稳态热传导模型的结果有明显差别,具有更优的散热性能。因此,时变热荷载下的散热结构构型设计需要考虑瞬态响应的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号