首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55420篇
  免费   8649篇
  国内免费   5934篇
化学   21796篇
晶体学   907篇
力学   9976篇
综合类   687篇
数学   18300篇
物理学   18337篇
  2024年   28篇
  2023年   701篇
  2022年   1119篇
  2021年   1471篇
  2020年   2102篇
  2019年   1737篇
  2018年   1531篇
  2017年   1875篇
  2016年   2415篇
  2015年   1993篇
  2014年   3056篇
  2013年   4453篇
  2012年   3531篇
  2011年   4008篇
  2010年   3377篇
  2009年   3766篇
  2008年   3727篇
  2007年   3806篇
  2006年   3382篇
  2005年   3069篇
  2004年   2608篇
  2003年   2356篇
  2002年   1946篇
  2001年   1551篇
  2000年   1406篇
  1999年   1258篇
  1998年   1113篇
  1997年   980篇
  1996年   790篇
  1995年   745篇
  1994年   670篇
  1993年   536篇
  1992年   527篇
  1991年   418篇
  1990年   319篇
  1989年   268篇
  1988年   218篇
  1987年   156篇
  1986年   109篇
  1985年   168篇
  1984年   135篇
  1983年   68篇
  1982年   94篇
  1981年   78篇
  1980年   51篇
  1979年   70篇
  1978年   51篇
  1977年   60篇
  1976年   23篇
  1974年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hydrothermal synthesis using graphene oxide (GO) as a precursor has been used to produce luminescent graphene quantum dots (GQDs). However, such a method usually requires many reagents and multistep pretreatments, while can give rise to GQDs with low quantum yield (QY). Here, we investigated the concentration, the temperature of synthesis, and the pH of the GO solution used in the hydrothermal method through factorial design experiments aiming to optimize the QY of GQDs to reach a better control of their luminescent properties. The best synthesis condition (2 mg/mL, 175 °C, and pH = 8.0) yielded GQDs with a relatively high QY (8.9%) without the need of using laborious steps or dopants. GQDs synthesized under different conditions were characterized to understand the role of each synthesis parameter in the materials' structure and luminescence properties. It was found that the control of the synthesis parameters enables the tailoring of the amount of specific oxygen functionalities onto the surface of the GQDs. By changing the synthesis' conditions, it was possible to prioritize the production of GQDs with more hydroxyl or carboxyl groups, which influence their luminescent properties. The as-developed GQDs with tailored composition were used as luminescent probes to detect Fe3+. The lowest limit of detection (0.136 μM) was achieved using GQDs with higher amounts of carboxylic groups, while wider linear range was obtained by GQDs with superior QY. Thus, our findings contribute to rationally produce GQDs with tailored properties for varied applications by simply adjusting the synthesis conditions and suggest a pathway to understand the mechanism of detection of GQDs-based optical sensors.  相似文献   
2.
针对考虑几何和材料非线性的石英晶体板厚度剪切振动和弯曲振动的方程组,利用扩展伽辽金法对该方程组进行转化和求解,分别获得了强烈耦合的厚度剪切振动模态和弯曲振动模态的频率响应关系,绘制了不同振幅比和不同驱动电压影响下的频率响应曲线图。数值计算结果表明可以选取石英晶片的最佳长厚比尺寸来避免两种模态的强烈耦合。驱动电压的变化将引起石英晶体谐振器厚度剪切振动频率的明显改变,必须将振动频率的漂移值控制在常用压电声波器件的允许值之内。扩展伽辽金法对石英晶体板非线性振动方程组的求解为非线性有限元分析和偏场效应分析奠定了基础。  相似文献   
3.
In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set-valued mapping with closed graph.We establish the convergence criteria of the restricted inexact Newton-type method,which guarantees the existence of any sequence generated by this method and show this generated sequence is convergent linearly and quadratically according to the particular assumptions on the Frechet derivative of f.Indeed,we obtain semilocal and local convergence results of restricted inexact Newton-type method for solving the above generalized equation when the Frechet derivative of f is continuous and Lipschitz continuous as well as f+F is metrically regular.An application of this method to variational inequality is given.In addition,a numerical experiment is given which illustrates the theoretical result.  相似文献   
4.
采用水热-煅烧法制备Cd2SnO4,之后通过超声混合法得到一系列MoS2/Cd2SnO4复合材料。采用X射线衍射、扫描电子显微镜、X射线光电子能谱对Cd2SnO4和一系列MoS2/Cd2SnO4复合材料进行结构和形貌的表征。研究了MoS2掺杂量对于MoS2/Cd2SnO4复合材料的气敏性能影响。实验结果表明,当MoS2与Cd2SnO4的质量比为2.5%,MoS2/Cd2SnO4复合材料制备的气敏元件在170 ℃时对浓度为100 μL·L-1的甲醛气体的灵敏度为40.0,最低检测限为0.1 μL·L-1。  相似文献   
5.
The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3Sn and W3Sn (n=0–3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N−N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3Sn is generally higher than that of W3Sn. In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N−N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3Sn decreases because of the hindering effect of S atoms, while W3S and W3S2 have the highest reactivity among four W3Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N−N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N−N bond activation, which is more significant in Nb3Sn than in W3Sn, leading to the higher reactivity of Nb3Sn. The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).  相似文献   
6.
A detailed study of the geometry, aromatic character, electronic and magnetic properties for a series of positively charged N-doped polycyclic aromatic hydrocarbons (PAHs) was performed. Magnetic properties of the examined molecules were analyzed by means of the magnetically induced current density calculated using the diamagnetic-zero version of the continuous transformation of origin of current density (CTOCD-DZ) method. The comparative study of the local aromaticity of the studied molecules was performed using several different indices: energy effect (ef), harmonic oscillator model of aromaticity (HOMA) index, six centre delocalization index (SCI) and nucleus independent chemical shifts (NICS). The presence of N-atoms in the inner rings was found to cause a planarity distortion in the studied N-doped systems. The geometric changes and charged nature of the studied N-doped systems do not significantly influence the current density and the local aromaticity distribution in comparison with the corresponding parent benzenoid hydrocarbons. The present study demonstrates how quantum chemical calculations can be used for rational design of novel PAHs and for fine tuning of their properties.  相似文献   
7.
Dehydrogenation of an organic compound is the first and the most fundamental elementary reaction in many organic reactions. In ethanol oxidation reaction (EOR) to form CO2, there are a total of 46 pathways in C2HxO (x=1–6) species leading to the removal of all six hydrogen atoms in five C−H bonds and one O−H bond. To investigate the degree of dehydrogenation in EOR under operando conditions, we performed density function theory (DFT) calculations to study 28 dehydrogenation steps of C2HxO on Ir(100). An activation energy surface was then constructed and compared with that of the C−C bond cleavages to understand the importance of the degree of dehydrogenation in EOR. The results show that there are likely 28 dehydrogenations in EOR under fuel cell temperatures and the last two hydrogens in C2H2O are less likely cleaved. On the other hand, deep dehydrogenation including 45 dehydrogenations can occur under ethanol steam reforming conditions.  相似文献   
8.
A mathematical model of simultaneous cobalt deposition and hydrogen evolution was developed and applied to the electroreduction process of 5 mM Co2+ ions investigated by cyclic voltammetry (CV) technique at different hydrogen ion concentrations (pH=2, 3, 4). The kinetic parameters of such a complex process were determined, and the validity of the model and its sensitivity to changes in individual parameters were verified. The relative value of the approximate standard deviation (ASD%) was used to determine the degree of fit of the model to the experimental data. The catalytic effect of cobalt on the hydrogen evolution process was comprehensively confirmed.  相似文献   
9.
Supercapacitors (SCs) with high energy density and power density are a research hotspot. Herein, we report a flexible porous carbon membrane supercapacitor prepared by electrospinning polyacrylonitrile (PAN) with γ-cyclodextrin-MOF (γ-CD-MOF) and then carbonizing at 900 °C. BET results showed that the supercapacitor retained the skeleton of γ-CD, γ-CD-MOF and the pores formed by the spun-fibers, which were 0.73, 1.09 and 23–186 nm, respectively, showing a high specific surface area of 134.7 m2/g. The hierarchically porous structures ensure rapid charge transfer and ion diffusion, resulting in the PAN/γ-CD-MOF carbon electrode with a high capacity of 283.3 F/g. Moreover, the supercapacitor had a high energy density up to 17.5 Wh/kg and power density up to 6 kW/kg. Significantly, it showed excellent cycle stability with a capacitance retention of 97.5% after 6000 cycles. This work provides a supramolecular strategy to construct a flexible porous carbon membrane, which has potential for supercapacitor applications.  相似文献   
10.
0.5 mol% Nd-doped (Ba0.85Ca0.15)(Ti0.9Hf0.1)O3 (BCTH-Nd) lead-free ceramics were prepared by a solid-phase twin crystal method, where the effects of sintering condition on structure, electrical and optical properties were studied. All the sintered BCTH-Nd ceramics exhibit pure perovskite structure, dense microstructure with several micron grain size, which tends to increase with elevating sintering temperature. All synthesized ceramics have complex dielectric behavior, which presents normal ferroelectrics characteristic with slight dispersion phenomenon. The BCTH-Nd ceramics exhibit excellent piezoelectric and ferroelectric properties and acceptable dielectric performance when sintered at 1480 °C for 2 h. Under 269 nm light excitation, several fluorescent emission peaks are excited with a whole indigo fluorescence, where the strongest emission peak is emitted at 473 nm, corresponding to the 4G3/2 → 4I9/2 energy level transition of Nd3+. Multifunctional performance is fulfilled in the lead-free BCTH ceramics via rare earth doping, which can broaden the application fields of piezoelectric-based materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号