首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  完全免费   14篇
  力学   24篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
固体力学中的无网格方法   总被引:57,自引:4,他引:53       下载免费PDF全文
简要地介绍了目前在无网格方法中主要使用的近似方案:移动最小二乘法、核函数法和单位分解法,并对这些方案的联系及各自的一致性条件进行了讨论;此外,对于无网格方法在数值计算中的离散方案、积分方案、边界条件的引入以及如何处理场函数或其导数的不连续性加以论述.  相似文献
2.
扩展有限元法(XFEM)及其应用   总被引:25,自引:2,他引:23       下载免费PDF全文
扩展有限元法(extended finite element method, XFEM)是1999年提出的一种求解不连续力学问题的数值方法, 它继承了常规有限元法(CFEM) 的所有优点, 在模拟界面、裂纹生长、复杂流体等不连续问题时特别有效, 短短几年间得到 了快速发展与应用. XFEM与CFEM的最根本区别在于, 它所使用的网格与结构内部的几何或 物理界面无关, 从而克服了在诸如裂纹尖端等高应力和变形集中区进行高密度网格剖分所带 来的困难, 模拟裂纹生长时也无需对网格进行重新剖分. 重点介绍XFEM的基本原理、 实施步骤及应用实例等, 并进行必要的评述. 单位分解概念保证了XFEM的收敛, 基于此, XFEM 通过改进单元的形状函数使之包含问题不连续性的基本成分, 从而放松对网格密度的过分要 求. 水平集法是XFEM中常用的确定内部界面位置和跟踪其生长的数值技术, 任何内部界面 可用它的零水平集函数表示. 第2和第3节分别简要介绍单位分解法和水平集法; 第4节和第5节介绍XFEM的基本思想、详细实施步骤和若干应用实例, 同时修正了以往文 献中的一些不妥之处; 最后, 初步展望了该领域尚需进一步研究的课题.  相似文献
3.
基于单位分解法的无网格数值流形方法   总被引:18,自引:1,他引:17  
李树忱  程玉民 《力学学报》2004,36(4):496-500
在数值流形方法和单位分解法的基础上,提出了无网格数值流形方法,无网格数值流形方法在分析时采用了双重覆盖系统,即数学覆盖和物理覆盖,数学覆盖提供的节点形成求解域的有限覆盖和单位分解函数;而物理覆盖描述问题的几何区域及其域内不连续性,与原有的数值流形方法相比,无网格数值流形方法的数学覆盖形状更加灵活,可以用一系列节点的影响域来建立数学覆盖和单位分解函数,具有无网格方法的特性,从而摆脱了传统的数值流形方法中网格所带来的困难,与无网格方法相比,由于采用了有限覆盖技术,试函数的构造不受域内不连续的影响,克服了原有的无网格方法在处理不连续问题时所遇到的困难,详细推导了无网格数值流形方法的试函数和求解方程,最后给出了算例,验证了该方法的正确性。  相似文献
4.
IntroductionIt is known that standard finite element procedure is unable to simulate the wavepropagation with high oscillations or gradients in space in the media with reasonableefficiency and accuracy due to the nature of polynomial interpolation approxi…  相似文献
5.
The cohesive segments method is a finite element framework that allows for the simulation of the nucleation, growth and coalescence of multiple cracks in solids. In this framework, cracks are introduced as jumps in the displacement field by employing the partition of unity property of finite element shape functions. The magnitude of these jumps are governed by cohesive constitutive relations. In this paper, the cohesive segments method is extended for the simulation of fast crack propagation in brittle solids. The performance of the method is demonstrated in several examples involving crack growth in linear elastic solids under plane stress conditions: tensile loading of a block; shear loading of a block and crack growth along and near a bi-material interface.  相似文献
6.
混凝土断裂的连续-非连续方法   总被引:1,自引:0,他引:1  
采用有限元形函数作为单位分解函数,位移间断用富集节点的附加自由度表示,建立了允许在单元内部位移非连续的局部富集公式以表征混凝土的开裂区域.富集基函数由节点形函数和节点形函数与间断函数的乘积的并集构成.非连续位移的扩展路径完全与网格结构无关.不同于以非协调应变为基础的嵌入非连续模型,对单元的类型没有限制而且间断位移可以贯穿单元边界.局部富集思想与扩展有限元类似,但富集点自由度保持节点位移的物理意义不变,使相邻单元无需进行富集运算.在变分公式中引入混凝土粘结本构定律,推导了考虑断裂过程区非线性影响的基本方程.对混凝土粘结裂纹扩展的数值模拟说明了该计算方法的有效性.  相似文献
7.
In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (X-FEM) within Dynaflow™, a standard finite element package. In our implementation, we focused on two-dimensional crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip asymptotic functions are added to the finite element approximation using the framework of partition of unity. This permits the crack to be represented without explicitly meshing the crack surfaces and crack propagation simulations can be carried out without the need for any remeshing. In this paper, we present numerical solutions for the stress intensity factor for crack problems, and also conduct crack growth simulations with the X-FEM. Numerical examples are presented with a two-fold objective: first to show the efficacy of the X-FEM implementation in Dynaflow™; and second to demonstrate the accuracy and versatility of the method to solve challenging problems in computational failure mechanics.  相似文献
8.
The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear elasticity, a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are used to account for the crack. This enables the domain to be modeled by finite elements without explicitly meshing the crack surfaces, and hence quasi-static crack propagation simulations can be carried out without remeshing. In this paper, we discuss some of the key issues in the X-FEM and describe its implementation within a general-purpose finite element code. The finite element program Dynaflow™ is considered in this study and the implementation for modeling 2-d cracks in isotropic and bimaterial media is described. In particular, the array-allocation for enriched degrees of freedom, use of geometric-based queries for carrying out nodal enrichment and mesh partitioning, and the assembly procedure for the discrete equations are presented. We place particular emphasis on the design of a computer code to enable the modeling of discontinuous phenomena within a finite element framework.  相似文献
9.
一种曲折裂纹尖端单元位移场的构造方法   总被引:1,自引:1,他引:0       下载免费PDF全文
在扩展有限元的框架内,本文发展了一种构造裂尖单元位移场的方法。整个裂纹沿程两侧的非连续位移场只通过富集变换的阶梯函数表征,在裂尖单元,通过调整形函数使得非连续性严格地消失于裂纹尖端。在避免混合区单元引入不满足单位分解的附加位移项的同时,实现了裂纹尖端单元位移场部分非连续特性的表达。还对裂尖单元的形函数调整原则进行了分析,以平面四节点单元为例提出了两种调整方式。文中裂尖单元中含有曲折裂纹的算例说明了本文方法的有效性和适用性。  相似文献
10.
The meshless manifold method is based on the partition of unity method and the finite cover approximation theory which provides a unified framework for solving problems dealing with both continuum with and without discontinuities. The meshless manifold method employs two cover systems. The mathematical cover system provides the nodes for forming finite covers of the solution domain and the partition of unity functions. And the physical cover system describes geometry of the domain and the discontinuous surfaces in the domain. The shape functions are derived by the partition of unity and the finite covers approximation theory. In meshless manifold method, the mathematical finite cover approximation theory is used to model cracks that lead to interior discontinuities in the displacement. Therefore, the discontinuity is treated mathematically instead of empirically by the existing methods. However, one cover of a node is divided into two irregular sub-covers when the meshless manifold method is used to model the discontinuity. As a result, the method sometimes causes numerical errors at the tip of a crack. To improve the precision of the meshless manifold method, the enriched methods are introduced in this work for crack problems.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号