首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   32篇
  国内免费   3篇
化学   13篇
力学   20篇
综合类   4篇
数学   64篇
物理学   45篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   12篇
  2016年   11篇
  2015年   3篇
  2014年   14篇
  2013年   7篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   10篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1986年   1篇
排序方式: 共有146条查询结果,搜索用时 250 毫秒
1.
This paper describes how to treat hard uncertainties defined by so-called uncertainty maps in multiobjective optimization problems. For the uncertainty map being set-valued, a Taylor formula is shown under appropriate assumptions. The hard uncertainties are modeled using parametric set optimization problems for which a scalarization result is given. The presented new approach for the solution of multiobjective optimization problems with hard uncertainties is then applied to the layout optimization of photovoltaic power plants. Since good weather forecasts are difficult to obtain for future years, weather data are really hard uncertainties arising in the planning process. Numerical results are presented for a real-world problem on the Galapagos island Isabela.  相似文献   
2.
This article addresses the issue of robust sampled‐data control for a class of uncertain mechanical systems with input delays and linear fractional uncertainties which appear in all the mass, damping, and stiffness matrices. Then, a novel Lyapunov–Krasovskii functional is constructed to obtain sufficient conditions under which the uncertain mechanical system is robustly, asymptotically stable with disturbance attenuation level about its equilibrium point for all admissible uncertainties. More precisely, Schur complement and Jenson's integral inequality are utilized to substantially simplify the derivation of the main results. In particular, a set of sampled‐data controller is designed in terms of the solution of certain linear matrix inequalities that can be solved effectively using available MATLAB software. Finally, a numerical example with simulation result is provided to show the effectiveness and less conservativeness of the proposed sampled‐data control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 19–29, 2015  相似文献   
3.
路永坤 《物理学报》2015,64(5):50503-050503
针对含参数不确定的整数阶统一混沌系统, 提出一种鲁棒分数阶比例-微分(PDμ)控制. 通过变换将受控统一混沌系统转换成等效被控对象及其等效控制器. 针对等效被控对象, 基于一种改进Monje-Vinagre方法并考虑到求解性能约束方程组的复杂度, 设计了鲁棒PDμ控制器. 通过基于最小相角边界传递函数和最大增益边界传递函数的设计约束来保证受控统一混沌系统对参数不确定性的鲁棒性能. 数值仿真验证了所提出方法的有效性.  相似文献   
4.
不确定非线性动力系统的稳定性分析   总被引:2,自引:0,他引:2  
本文讨论渐近稳定的非线性名义动力系统在非线性时变扰动下的鲁棒稳定性问题。应用Lyapunov稳定性定理及其推广定理得出了非线性动力系统鲁棒稳定的若干判别准则,并给邮了应用所得准则的实际算例。  相似文献   
5.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
This article contributes to the development of methods for shape optimization under uncertainties, associated with the flow conditions, based on intrusive Polynomial Chaos Expansion (iPCE) and continuous adjoint. The iPCE to the Navier–Stokes equations for laminar flows of incompressible fluids is developed to compute statistical moments of the Quantity of Interest which are, then, compared with those obtained through the Monte Carlo method. The optimization is carried out using a continuous adjoint-enabled, gradient-based loop. Two different formulations for the continuous adjoint to the iPCE PDEs are derived, programmed, and verified. Intrusive PCE methods for the computation of the statistical moments require mathematical development, derivation of a new system of governing equations and their numerical solution. The development is presented for a chaos order of two and two uncertain variables and can be used as a guide to those willing to extend this development to a different set of uncertain variables or chaos order. The developed method and software, programmed in OpenFOAM, is applied to two optimization problems pertaining to the flow around isolated airfoils with uncertain farfield conditions.  相似文献   
7.
This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which are too conservative to be practically useful, we present algorithmic extensions of classical approaches which are applicable to the simulation of non-cooperative systems with time-varying uncertain parameters. Overestimation arising in the interval evaluation of dynamical system models due to the wrapping effect is reduced by an exact pseudo-linear transformation of nonlinear state equations and by new heuristics for the subdivision of interval enclosures which especially prefer splitting of unstable intervals. To highlight the typical procedure for parameterization of interval-based simulation routines and to demonstrate their efficiency, a nonlinear model of biological wastewater treatment processes is discussed. For this application, we consider the maximum specific growth rate of substrate consuming bacteria as a time-varying uncertain parameter. Only worst-case bounds are assumed to be available for the range of this parameter while no information is provided about its actual variation rate.  相似文献   
8.
9.
We report uncertainties in X‐ray photoelectron spectroscopy (XPS) intensities arising from commonly used methods and procedures for subtraction of the spectral background. These uncertainties were determined from a comparison of XPS intensities reported by volunteer analysts and the corresponding intensities expected for a set of simulated XPS spectra. We analyzed peak intensities from 16 sets of data (submitted from 15 institutions) for a group of 12 spectra that had been simulated for an unmonochromated Al‐Kα source and similar intensities from 20 sets of data (submitted from 17 institutions) that had been simulated for an unmonochromated Mg‐Kα source. Each reported intensity was compared with an expected intensity for the particular integration limits chosen by each analyst and known from the simulation design. We present ratios of the reported intensities to the expected intensities for the background‐subtraction methods chosen by the analysts. These ratios were close to unity in most cases, as expected, but deviations were found in the results from some analysts, particularly if shakeup was present. We showed that better results for the Shirley and Tougaard backgrounds were obtained when analysts determined peak intensities over certain energy ranges or integration limits. We then were able to suggest integration limits that should be a useful guide in the determination of peak intensities for other XPS spectra. The use of relatively narrow integration limits with the Shirley and linear backgrounds, however, will lead to measures of peak intensity that are less than the total intensities. Although these measures may be satisfactory for some quantitative analyses, errors in quantitative XPS analyses can occur if there are changes in XPS lineshapes or shakeup fractions with change of chemical state. The use of curve‐fitting equations to fit an entire spectrum will generally exclude the shakeup contribution to the intensity of the main peak, and any variation in the shakeup fraction with change of chemical state will not be taken into account. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   
10.
This article reports on an investigation into robust guaranteed cost control (GCC) for uncertain switched neutral systems (USNSs) with interval time‐varying mixed delays and nonlinear perturbations via dynamic output feedback. Delay‐dependent sufficient conditions are suggested to guarantee the robust exponential stability and to obtain robust GCC for USNSs using the average dwell time approach and the piecewise Lyapunov function technique in terms of a set of linear matrix inequalities. The problem of uncertainty in the system model is solved by deploying the Yakubovich lemma. Lastly, two examples (i.e., a numerical example and the water‐quality dynamic model for the Nile River) are given to verify the efficiency of the propounded theories. © 2016 Wiley Periodicals, Inc. Complexity 21: 555–578, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号