首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2325篇
  免费   287篇
  国内免费   146篇
化学   190篇
晶体学   2篇
力学   1379篇
综合类   55篇
数学   532篇
物理学   600篇
  2024年   3篇
  2023年   18篇
  2022年   44篇
  2021年   52篇
  2020年   70篇
  2019年   53篇
  2018年   57篇
  2017年   83篇
  2016年   119篇
  2015年   78篇
  2014年   123篇
  2013年   172篇
  2012年   150篇
  2011年   158篇
  2010年   127篇
  2009年   137篇
  2008年   135篇
  2007年   140篇
  2006年   124篇
  2005年   119篇
  2004年   117篇
  2003年   117篇
  2002年   77篇
  2001年   70篇
  2000年   56篇
  1999年   52篇
  1998年   35篇
  1997年   44篇
  1996年   25篇
  1995年   32篇
  1994年   16篇
  1993年   22篇
  1992年   26篇
  1991年   18篇
  1990年   10篇
  1989年   16篇
  1988年   7篇
  1987年   3篇
  1986年   7篇
  1985年   9篇
  1984年   3篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1971年   2篇
  1957年   2篇
排序方式: 共有2758条查询结果,搜索用时 19 毫秒
1.
Abstract

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena due to the influence of magnetic field and moving heat source in a rod in the context of three-phase lag (TPL) theory of thermoelasticity. Both ends of the rod are fixed and heat insulated. Employing Laplace transform as a tool, the problem has been transformed into the space-domain and solved analytically. Finally, solutions in the real-time domain are obtained by applying the inverse Laplace transform. Numerical calculation for stress, displacement, and temperature within the rod is carried out and displayed graphically. The effect of moving heat source speed on temperature, stress, and temperature is studied. It is found from the distributions that the temperature, thermally induced displacement and stress of the rod are found to decrease at large source speed. For the better understanding of the effect of moving heat source on all the distributions, three animations are added.  相似文献   
2.
In the recent decade, the meshless methods have been handled for solving most of PDEs due to easiness of the meshless methods. One of the popular meshless methods is the element-free Galerkin (EFG) method that was first proposed for solving some problems in the solid mechanics. The test and trial functions of the EFG are based on the special basis. Recently, some modifications have been developed to improve the EFG method. One of these improvements is the variational multiscale EFG procedure. In the current article, the shape functions of interpolation moving least squares approximation have been applied to the variational multiscale EFG technique for solving the incompressible magnetohydrodynamics flow. In order to reduce the elapsed CPU time of simulation, we employ a reduced-order model based on the proper orthogonal decomposition technique. The current combination can be referred to as the reduced-order variational multiscale EFG technique. To illustrate the reduction in CPU time used as well as the efficiency of the proposed method, we applied it for the two-dimensional cases.  相似文献   
3.
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties.  相似文献   
4.
This paper applies the entropy-based fractal indexing scheme that enables the grid environment for fast indexing and querying. It addresses the issue of fault tolerance and load balancing-based fractal management to make computational grids more effective and reliable. A fractal dimension of a cloud of points gives an estimate of the intrinsic dimensionality of the data in that space. The main drawback of this technique is the long computing time. The main contribution of the suggested work is to investigate the effect of fractal transform by adding R-tree index structure-based entropy to existing grid computing models to obtain a balanced infrastructure with minimal fault. In this regard, the presented work is going to extend the commonly scheduling algorithms that are built based on the physical grid structure to a reduced logical network. The objective of this logical network is to reduce the searching in the grid paths according to arrival time rate and path’s bandwidth with respect to load balance and fault tolerance, respectively. Furthermore, an optimization searching technique is utilized to enhance the grid performance by investigating the optimum number of nodes extracted from the logical grid. The experimental results indicated that the proposed model has better execution time, throughput, makespan, latency, load balancing, and success rate.  相似文献   
5.
The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as k = 10 000.  相似文献   
6.
Some models for axially moving orthotropic thin plates are investigated analytically via methods of complex analysis to derive estimates for critical plate velocities. The linearized Kirchhoff plate theory is used, and the energy forms of steady-state models are considered with homogeneous and inhomogeneous tension profiles in the cross direction of the plate. With the help of the energy forms, some limits for the divergence velocity of the plate are found analytically. In numerical examples, the derived lower limits for the divergence velocity are analyzed for plates with small flexural rigidity.  相似文献   
7.
In this paper, we investigate the evolution of joint invariants under invariant geometric flows using the theory of equivariant moving frames and the induced invariant discrete variational complex. For certain arc length preserving planar curve flows invariant under the special Euclidean group , the special linear group , and the semidirect group , we find that the induced evolution of the discrete curvature satisfies the differential‐difference mKdV, KdV, and Burgers' equations, respectively. These three equations are completely integrable, and we show that a recursion operator can be constructed by precomposing the characteristic operator of the curvature by a certain invariant difference operator. Finally, we derive the constraint for the integrability of the discrete curvature evolution to lift to the evolution of the discrete curve itself.  相似文献   
8.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
9.
对于一般任意支撑的连续梁结构动力稳定性问题,已有的计算方法求解过程都很复杂,给工程设计带来极大的不便.本文提出了一个简化的分析方法,利用现有的商业软件,只需求得连续梁的自然频率及静力屈曲(失稳)荷载,就可容易得到结构的动力失稳区域,当考虑结构阻尼对不稳定区域的影响时,可将阻尼矩阵表达为Rayleigh阻尼的形式.研究结果表明:采用本文计算方法与已有的理论计算方法得到的连续梁主参数共振的不稳定边界非常吻合,而本文计算方法更为简单,计算结果可靠,计算精度高,可满足工程设计的需要.  相似文献   
10.
We propose a new approach for reconstructing velocity boundary conditions in sharp-inerface immersed boundary (IB) methods based on the moving least squares (MLS) interpolation method. The MLS is employed to not only reconstruct velocity boundary conditions but also to calculate the pressure and velocity gradients in the vicinity of the immersed body, which are required in fluid structure interaction problems to obtain the force exerted by the fluid on the structure. To extend the method to arbitrarily complex geometries with nonconvex shaped boundaries, the visibility method is combined with the MLS method. The performance of the proposed curvilinear IB MLS (CURVIB-MLS) is demonstrated by systematic grid-refinement studies for two- and three-dimensional tests and compared with the standard CURVIB method employing standard wall-normal interpolation for reconstructing boundary conditions. The test problems are flow in a lid-driven cavity with a sphere, uniform flow over a sphere, flow on a NACA0018 airfoil at incidence, and vortex-induced vibration of an elastically-mounted cylinder. We show that the CURVIB-MLS formulation yields a method that is easier to implement in complex geometries and exhibits higher accuracy and rate of convergence relative to the standard CURVIB method. The MLS approach is also shown to dramatically improve the accuracy of calculating the pressure and viscous forces imparted by the flow on the body and improve the overall accuracy of FSI simulations. Finally, the CURVIB-MLS approach is able to qualitatively capture on relatively coarse grids important features of complex separated flows that the standard CURVIB method is able to capture only on finer grids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号