首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   249篇
化学   930篇
晶体学   16篇
力学   83篇
综合类   12篇
数学   27篇
物理学   368篇
  2023年   2篇
  2022年   15篇
  2021年   13篇
  2020年   52篇
  2019年   84篇
  2018年   33篇
  2017年   63篇
  2016年   101篇
  2015年   71篇
  2014年   60篇
  2013年   261篇
  2012年   69篇
  2011年   65篇
  2010年   49篇
  2009年   59篇
  2008年   58篇
  2007年   57篇
  2006年   38篇
  2005年   51篇
  2004年   54篇
  2003年   47篇
  2002年   32篇
  2001年   21篇
  2000年   13篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   17篇
  1994年   14篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1979年   3篇
  1957年   1篇
排序方式: 共有1436条查询结果,搜索用时 33 毫秒
1.
The mechanical characteristics and thermal properties of composite films based on the thermally stable aromatic polyimide (PI) (PMDA‐ODA) and carbon nanocones/discs (CNC) were studied. The introduction of CNC to PMDA‐ODA leads to the substantial increase of film stiffness. The Young's modulus values of the composite films are somewhat higher than those of the previously characterized composite films of this PI filled with nanoclay, carbon nanofibers, and asbestos‐like hydrosilicate nanotubes. The introduction of CNC into PMDA‐ODA (concentrations of CNC were up to 15 vol%) does not cause any marked aggregation of nanoparticles. The presence of CNC in the PI matrix does not affect the glass transition temperature of the polymer but hinders chain mobility at temperatures above Tg. This behavior makes it possible to increase the working temperature range of the composite films containing more than 5 vol% of CNCs, up to the temperature of thermal decomposition. The introduction of CNC into PMDA‐ODA leads to dramatic (~12 orders of magnitude) increase of active electrical conductivity of the material. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
本研究中,以石油焦为造孔剂、Y2O3-Al2O3为烧结助剂,通过注浆成型制备出多孔氮化硅陶瓷。研究石油焦的加入量对多孔氮化硅陶瓷微观结构、力学性能及气体透气性的影响。结果表明:多孔氮化硅陶瓷的微孔是由长棒状的β-Si3N4晶粒互相搭接而成,大孔是由石油焦燃烧而成。随着石油焦加入量的增加,气孔率及达西渗透系数(μ)增大,但试样的抗弯强度降低。在起始α-Si3N4粉末中添加10wt%~50wt%石油焦、5wt%Y2O3-3wt%Al2O31800℃下保温2 h制备出气孔率为37.08%~59.40%、抗弯强度为52.00~154.27 MPa、μ值为(3.04~6.87)×10-13m2的多孔氮化硅陶瓷。  相似文献   
3.
Ab initio calculations, based on norm-conserving nonlocal pseudopotentials and density functional theory (DFT), are performed to investigate the structural, elastic, dielectric, and vibrational properties of aluminum arsenide AlAs with zinc-blende (B3) structure and nickel arsenide (B81) structure under hydrostatic pressure. Firstly, the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures, which is in good agreement with previous theoretical results. Secondly, we find that the elastic constants, bulk modulus, static dielectric constants, and the optical phonon frequencies are varying in a nearly linear manner under hydrostatic pressure. What is more, the softening mode of transversal acoustic mode at X point supports the phase transition in AlAs.  相似文献   
4.
Ab initio calculations,based on norm-conserving nonlocal pseudopotentials and density functional theory(DFT),are performed to investigate the structural,elastic,dielectric,and vibrational properties of aluminum arsenide(AlAs) with a zinc-blende(B3) structure and a nickel arsenide(B81) structure under hydrostatic pressure.Firstly,the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures,which is in good agreement with previous theoretical results.Secondly,we find that the elastic constants,bulk modulus,static dielectric constants,and the optical phonon frequencies vary in a nearly linear manner under hydrostatic pressure.What is more,the softening mode of the transversal acoustic mode at the X point supports the phase transition in AlAs.  相似文献   
5.
The fabrication of three‐dimensional (3D) electrospun composite scaffolds was presented in this study. Layers of electrospun meshes made from composites of poly(lactide‐co‐glycolide acid) (PLGA) and hydroxyapatite (HA) were stacked and sintered using pressurized gas. Three HA concentrations of 5, 10, and 20 wt % were tested, and the addition of the HA nanoparticles decreased the tensile mechanical properties of the meshes with 20 wt % HA. However, after the gas absorption process, the fibers within the mesh sintered, which improved the mechanical properties more than twofold. The fabrication of 3D, porous, electrospun scaffolds was also demonstrated. The resulting 3D scaffolds had open porosity of up to 70% and modulus of ~20 MPa. This technique improves on the current electrospinning technology by overcoming the challenges of depositing a thick, 3D structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
6.
This study presents quantitative results related to in situ investigation of the microstructural evolutions of high‐density polyethylene with deformation. These results were obtained thanks to a novel technique (IPSLT) based on the polarized light scattering transport phenomenon. The heterogeneities produced during whitening of the polymer bulk are characterized at the mesoscale level (from hundred of nanometers to a few micrometers). The technique is described as well as the identified parameters it provides, namely: the average size of the scatterers, the anisotropy developed in the medium, and the light transport length, representative of both the volume fraction and size of the heterogeneities. Results obtained during video‐controlled tensile experiments confirm those obtained previously with X‐ray microtomography. They put forward the role of morphological transformations of the amorphous/crystalline phases (especially regarding the creation of fibrillar assemblies) rather than the cavitation phenomenon. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
7.
Wrinkles with two distinct wavelengths formed sequentially on the same surface are investigated. A series of aligned wrinkles are formed through local strain application on a partially crosslinked elastomer. After the formation of these primary wrinkles, the elastomer is fully crosslinked, and a mechanical compressive strain is applied to the sample orthogonal to the primary wrinkles. This mechanical strain results in smaller secondary wrinkles superimposed on the larger primary aligned wrinkles. Resulting biaxial morphologies suggest that the primary pattern directs the formation of the smaller wrinkles. The modulus mismatch of the substrate on primary and secondary wrinkle formation dictates the ratio between the two resulting wavelengths, as well as the specific biaxial morphologies, ranging from zigzag ridges to ellipsoidal bumps or corn‐on‐the‐cob structures to the classic herringbone. The sequential strain wrinkling process has the potential to be used on an industrial scale for the facile formation of surface topography with two discrete, tunable lateral dimensions over large surface areas. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
8.
We study geometric and energetic factors that partake in modifying properties of polymeric melts via inserting well‐dispersed nanoscopic particles (NP). Model systems are cis‐1,4‐polybutadiene melts including a single atomic clusters of size varied in the range 10–150 atoms (3–7 Å in radius; 0.1–1.5% v/v). We modify the interactions between the chains and the particle by tuning attractive van der Waals interactions. Using molecular dynamics, we study equilibrium fluctuations and dynamical properties at the interface. The NPs move in the polymer matrix in two different regimes corresponding to trapped and free diffusion, depending on the NP size. Furthermore, degree of crowding around the NP by the polymer chains is quantified. Effect of NP size and interaction strength both on volume and volumetric fluctuations is manifested in mechanical properties, quantified here by bulk modulus, K. Tuning NP size and nonbonded interactions results in ~15% enhancement in K by addition of a maximum of 1.5% v/v NP. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
9.
Poly(ethylene glycol)‐poly(lactide) (PEG‐PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star‐shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号