首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7335篇
  免费   979篇
  国内免费   260篇
化学   5700篇
晶体学   94篇
力学   401篇
综合类   6篇
数学   143篇
物理学   2230篇
  2023年   75篇
  2022年   118篇
  2021年   216篇
  2020年   420篇
  2019年   278篇
  2018年   219篇
  2017年   207篇
  2016年   335篇
  2015年   329篇
  2014年   370篇
  2013年   574篇
  2012年   430篇
  2011年   393篇
  2010年   296篇
  2009年   408篇
  2008年   435篇
  2007年   524篇
  2006年   384篇
  2005年   320篇
  2004年   265篇
  2003年   289篇
  2002年   221篇
  2001年   184篇
  2000年   138篇
  1999年   147篇
  1998年   128篇
  1997年   85篇
  1996年   89篇
  1995年   88篇
  1994年   69篇
  1993年   67篇
  1992年   65篇
  1991年   49篇
  1990年   41篇
  1989年   37篇
  1988年   35篇
  1987年   28篇
  1986年   37篇
  1985年   25篇
  1984年   26篇
  1983年   7篇
  1982年   13篇
  1981年   11篇
  1980年   19篇
  1979年   18篇
  1978年   14篇
  1977年   13篇
  1976年   10篇
  1974年   8篇
  1973年   7篇
排序方式: 共有8574条查询结果,搜索用时 15 毫秒
1.
In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q0M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C0(M?{q0}) is essentially self-adjoint in L2(M). A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C0(N?{q0}) is never essentially self-adjoint in L2(N), if dim?N3. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.  相似文献   
2.
本文利用环聚合分子动力学方法对C(1D)+H2反应开展了详细的理论研究. 计算中使用了最近构建的Zhang-Ma-Bian(ZMB)从头算势能面,该势能面对锥形交叉附近区域以及范德华区域均有精确的描述. 环聚合分子动力学计算得到的热反应速率常数与最新实验值吻合很好. 与前人计算结果比较,发现在?1A′电子基态的ZMB-a势能面上获得的反应速率常数远大于前人构建的RKHS势能面上的结果,这是由于ZMB势能面上的范德华鞍具有与之前势能面上的范德华阱完全不同的动态学作用,表明环聚合分子动力学方法能够处理范德华作用引起的势能面拓扑结构所导致的动态学效应. 本文还揭示了b1A′′电子激发态ZMB-b势能面以及量子效应对反应的重要性.  相似文献   
3.
Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, that is, the DFT based “clusters-in-a-liquid” solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP−D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations, which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed.  相似文献   
4.
During the past two decades, single-atom-centered medium-sized germanium clusters [M@Gen] (M=transition metals, n>12) have been extensively explored, both from theoretical perspectives and experimental gas-phase syntheses. However, the actual structural arrangements of the Ge13 and Ge14 endohedral cages are still ambiguous and have long remained an unresolved problem for experimental implementation. In this work, we successfully synthesize 13-/14-vertex Ge clusters [Nb@Ge13]3− ( 1 ) and [Nb@Ge14]3− ( 2 ), which are structurally characterized and exhibit unprecedented topologies, neither classical deltahedra nor 3-connected polyhedral structures. Theoretical analysis indicates that the major stabilization of the Ge backbones arises due to the substantial interaction of Ge 4p-AOs with the endohedral Nb 4d-AOs through three/four-center two-electron bonds with an enhanced electron density accumulated over the shortest Nb−Ge13 contact in 1 . Low occupancies of the direct two-center two-electron (2c–2e) Nb−Ge and Ge−Ge σ bonds point to a considerable degree of electron delocalization over the Ge cages revealing their electron deficiency.  相似文献   
5.
The different coordination behavior of the flexible yet sterically demanding, hemilabile P,N ligand bis(quinoline-2-ylmethyl)phenylphosphine ( bqmpp ) towards selected CuI, AgI and AuI species is described. The resulting X-ray crystal structures reveal interesting coordination geometries. With [Cu(MeCN)4]BF4, compound 1 [Cu2(bqmpp)2](BF4)2 is obtained, wherein the copper(I) atoms display a distorted square planar and square pyramidal geometry. The steric demand and π-stacking of the ligand allow for a short Cu⋅⋅⋅Cu distance (2.588(9) Å). CuI complex 2 [Cu4Cl3(bqmpp)2]BF4 contains a rarely observed Cu4Cl3 cluster, probably enabled by dichloromethane as the chloride source. In the cluster, even shorter Cu⋅⋅⋅Cu distances (2.447(1) Å) are present. The reaction of Ag[SbF6] with the ligand leads to a dinuclear compound ( 3 ) in solution as confirmed by 31P{1H} NMR spectroscopy. During crystallization, instead of the expected phosphine complex 3 , a tris(quinoline-2-ylmethyl)bisphenyl-phosphine ( tqmbp ) compound [Ag2(tqmbp)2](SbF6)2 4 is formed by elimination of quinaldine. The Au(I) compound [Au2(bqmpp)2]PF6 ( 5 ) is prepared as expected and shows a linear arrangement of two phosphine ligands around AuI.  相似文献   
6.
Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400–40 cm−1 range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions.  相似文献   
7.
Recently, chalcogen bonding has been investigated in more detail in organocatalysis and the scope of activated functionalities continues to increase. Herein, the activation of imines in a Povarov [4+2] cycloaddition reaction with bidentate cationic chalcogen bond donors is presented. Tellurium-based Lewis acids show superior properties compared to selenium-based catalysts and inactive sulfur-based analogues. The catalytic activity of the chalcogen bonding donors increases with weaker binding anions. Triflate, however, is not suitable due to its participation in the catalytic pathway. A solvent screening revealed a more efficient activation in less polar solvents and a pronounced effect of solvent (and catalyst) on endo : exo diastereomeric ratio. Finally, new chiral chalcogen bonding catalysts were applied but provided only racemic mixtures of the product.  相似文献   
8.
The characteristics of synchronous and phase difference bubble pairs in axisymmetric configuration near a boundary are investigated experimentally by the spark discharge method. Their destructive forces on nearby boundaries are measured using a polyvinylidene fluoride sensor. The bubble pair interactions and deformed features in the boundary vicinity are dissimilar to those in bulk water. Moreover, significant discrepancies between in-phase and out-of-phase pair interactions and their intensities of impulses are also witnessed. The interbubble distance (η), stand-off distance from the boundary (γ), and phase offset (τ) are crucial parameters affecting the shape evolutions and impulsive forces. From the qualitative analysis of sensor acquisition and high-speed imaging, it is observed that bubble periods are either prolonged or shorter than their corresponding isolated single cavity according to different parameters and arrangements. Additionally, the strongest impingements are produced by in-phase pairs. The impulses of phase difference bubble pairs are remarkably lower than in-phase pairs and even lower than a single bubble in some arrangements.  相似文献   
9.
Magnetic hyperthermia (MH) shows great potential in clinical applications because of its very localized action and minimal side effects. Because of their high saturation magnetization values, reduced forms of iron are promising candidates for MH. However, they must be protected in order to overcome their toxicity and instability (i. e., oxidation) under biological conditions. In this work, a novel methodology for the protection of iron nanoparticles through confinement within graphitic carbon layers after thermal treatment of preformed nanoparticles supported on carbon is reported. We demonstrate that the size and composition of the nascent confined iron nanoparticles, as well as the thickness of their protective carbon layer can be controlled by selecting the nature of the carbon support. Our findings reveal that a higher nanoparticle–carbon interaction, mediated by the presence of oxygen-containing groups, induces the formation of small and well-protected α-Fe-based nanoparticles that exhibit promising results towards MH based on their enhanced specific absorption rate values.  相似文献   
10.
In this work we consider a poroelastic, flexible material that may deform largely, which is situated in an incompressible fluid driven by the Navier–Stokes equations in two or three space dimensions. By a variational approach we show existence of weak solutions for a class of such coupled systems. We consider the unsteady case, this means that the PDE for the poroelastic solid involves the Fréchet-derivative of a non-convex functional as well as (second order in time) inertia terms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号