首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3308篇
  免费   400篇
  国内免费   288篇
化学   1196篇
晶体学   28篇
力学   1332篇
综合类   30篇
数学   428篇
物理学   982篇
  2024年   7篇
  2023年   53篇
  2022年   67篇
  2021年   84篇
  2020年   142篇
  2019年   98篇
  2018年   102篇
  2017年   133篇
  2016年   136篇
  2015年   78篇
  2014年   138篇
  2013年   340篇
  2012年   158篇
  2011年   146篇
  2010年   111篇
  2009年   157篇
  2008年   191篇
  2007年   201篇
  2006年   205篇
  2005年   174篇
  2004年   146篇
  2003年   144篇
  2002年   96篇
  2001年   91篇
  2000年   94篇
  1999年   104篇
  1998年   64篇
  1997年   79篇
  1996年   71篇
  1995年   65篇
  1994年   47篇
  1993年   37篇
  1992年   50篇
  1991年   44篇
  1990年   20篇
  1989年   14篇
  1988年   25篇
  1987年   19篇
  1986年   15篇
  1985年   12篇
  1984年   5篇
  1983年   2篇
  1982年   9篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1971年   1篇
  1957年   2篇
排序方式: 共有3996条查询结果,搜索用时 15 毫秒
1.
Hengcan Zhao 《中国物理 B》2022,31(11):117103-117103
CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressure- or field-tuned, extended quantum critical phase at zero temperature. Identifying characteristic signatures of the emerging quantum critical phase, which are expected to be distinct from those near a quantum critical point, remains challenging. In this work, by performing ultrasonic and thermoelectric measurements down to very low temperatures in a 3He-4He dilution refrigerator in the presence of magnetic field, we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase, including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.  相似文献   
2.
Miao Yu 《中国物理 B》2022,31(6):64303-064303
Nonlinear elastic metamaterial, a topic which has attracted extensive attention in recent years, can enable broadband vibration reduction under relatively large amplitude. The combination of damping and strong nonlinearity in metamaterials may entail extraordinary effects and offer the capability for low-frequency and broadband vibration reduction. However, there exists a clear lack of proper design methods as well as the deficiency in understanding properties arising from this concept. To tackle this problem, this paper numerically demonstrates that the nonlinear elastic metamaterials, consisting of sandwich damping layers and collision resonators, can generate very robust hyper-damping effect, conducive to efficient and broadband vibration suppression. The collision-enhanced hyper damping is persistently presented in a large parameter space, ranging from small to large amplitudes, and for small and large damping coefficients. The achieved robust effects greatly enlarge the application scope of nonlinear metamaterials. We report the design concept, properties and mechanisms of the hyper-damping and its effect on vibration transmission. This paper reveals new properties offered by nonlinear elastic metamaterials, and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.  相似文献   
3.
The importance of variable selection and regularization procedures in multiple regression analysis cannot be overemphasized. These procedures are adversely affected by predictor space data aberrations as well as outliers in the response space. To counter the latter, robust statistical procedures such as quantile regression which generalizes the well-known least absolute deviation procedure to all quantile levels have been proposed in the literature. Quantile regression is robust to response variable outliers but very susceptible to outliers in the predictor space (high leverage points) which may alter the eigen-structure of the predictor matrix. High leverage points that alter the eigen-structure of the predictor matrix by creating or hiding collinearity are referred to as collinearity influential points. In this paper, we suggest generalizing the penalized weighted least absolute deviation to all quantile levels, i.e., to penalized weighted quantile regression using the RIDGE, LASSO, and elastic net penalties as a remedy against collinearity influential points and high leverage points in general. To maintain robustness, we make use of very robust weights based on the computationally intensive high breakdown minimum covariance determinant. Simulations and applications to well-known data sets from the literature show an improvement in variable selection and regularization due to the robust weighting formulation.  相似文献   
4.
本文研究了弹性地基上梁主共振响应的时滞效应.基于Hamilton原理,建立了时滞影响下弹性地基上梁的非线性运动微分方程,采用多尺度法,求得了时滞效应下主共振响应调制方程以及稳定性条件.通过数值算例,分析了时滞和调谐参数影响下主共振响应的峰值及幅频响应特性.结果表明,地基反力中的时滞效应对主共振响应影响较大,会导致共振域偏移,在一定区间内,响应幅值随时滞变化先减小再增大,呈现出周期性,并导致幅频曲线弯曲程度增大.  相似文献   
5.
Hydrogels can potentially prolong the release of a therapeutic protein, especially to treat blinding conditions. One challenge is to ensure that the protein and hydrogel are intimately mixed by better protein entanglement within the hydrogel. N‐isopropylacrylamide (NIPAAM) gels are optimized with poly(ethylene glycol) diacrylate (PEDGA) crosslinker in the presence of either bevacizumab or PEG conjugated ranibizumab (PEG10‐Fabrani). The release profiles of the hydrogels are evaluated using an outflow model of the eye, which is previously validated for human clearance of proteins. Release kinetics of in situ loaded bevacizumab‐NIPAAM gels displays a prolonged bimodal release profile in phosphate buffered saline compared to bevacizumab loaded into a preformed NIPAAM gel. Bevacizumab release in simulated vitreous from in situ loaded gels is similar to bevacizumab control indicating that diffusion through the vitreous rather than from the gel is rate limiting. Ranibizumab is site‐specifically PEGylated by disulfide rebridging conjugation. Prolonged and continuous release is observed with the in situ loaded PEG10‐Fabrani‐NIPAAM gels compared to PEG10‐Fabrani injection (control). Compared to an unmodified protein, there is better mixing due to PEG entanglement and compatibility of PEG10‐Fabrani within the NIPAAM‐PEDGA hydrogel. These encouraging results suggest that the extended release of PEGylated proteins in the vitreous can be achieved using injectable hydrogels.  相似文献   
6.
The light-driven crawling of a molecular crystal that can form three phases, (α, β, and γ) is presented. Laser irradiation of the molecular crystal can generate phase-dependent transient elastic lattice deformation. The resulting elastic lattice deformation that follows scanning irradiation of a laser can actuate the different phases of molecular crystal to move with different velocity and direction. Because the γ phase has a large Young's modulus (ca. 26 GPa), a force of 0.1 μN can be generated under one laser spot. The generated force is sufficient to actuate the γ-formed molecular crystals in a wide dimensional range to move longitudinally at a velocity of about 60 μm min−1, which is two orders of magnitude faster than the α and β phases.  相似文献   
7.
Hydrogel‐based drug delivery systems can leverage therapeutically favorable upshots of drug release and found clinical uses. Hydrogels offer temporal and spatial control over the release of different therapeutic agents. Because of their tailor made controllable degradability, physical properties, and ability to prevent the labile drugs from degradation, hydrogels provide platform on which diverse physicochemical interactions with entrapped drugs cause to control drug release. Herein, we report the fabrication of novel vinyltrimethoxy silane (VTMS) cross‐linked chitosan/polyvinyl pyrrolidone hydrogels. Swelling in distilled water in conjunction with different buffer and electrolyte solutions was performed to assess the swellability of hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X‐ray diffraction (XRD) analysis were further conducted to investigate the possible interactions between components, thermal stability, and crystallinity of as‐prepared hybrid hydrogels, respectively. In vitro time‐dependent biodegradability, antimicrobial study, and cytotoxicity were also carried out to evaluate their extensive biocompatibility and cytotoxic behavior. More interestingly, in vitro drug release study allowed for the controlled release of cephradine. Therefore, this facile strategy developed the novel biocompatible and biodegradable hybrid hydrogels, which could significantly expand the scope of these hydrogels in other biomedical applications like scaffolds, skin regeneration, tissue engineering, etc.  相似文献   
8.
A hydrogel‐based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4‐ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC‐CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation. The large interfacial capacitance of the electrodes enables several days of electrical stimulation without generation of cytotoxic bubbles even when the electrodes are placed near the spheroids. The spheroids can be cultivated in the closed microchambers because of the permeated nutrients through the hydrogel, thus the spheroids are stably addressable and the culture medium around the sealed microchambers can be simply exchanged. Synchronized beating of the spheroids can be optically analyzed in situ, which makes it possible to selectively collect electrically responsive cells for further use. As the hydrogel is electrically conductive, the amount of electrical charge needed for maturing the spheroids can be reduced by configuring electrodes on the top and the bottom of the microchamber. The bioreactor will be useful for efficient production of matured hiPSC‐CMs for regenerative medicine and drug screening.  相似文献   
9.
The dielectric and elastic properties of liquid crystals (LCs) generally depend on the molecule structure, such as polar group and carbon chain length. For further investigation of the influence of molecular structure on the dielectric and elastic properties of fluorine-containing tricyclic isothiocyanate LC, the experimental temperature was controlled at 25°C by precision hot stage, and a precision LCR meter was used to measure the capacitance of six LC cells under the voltage from 0.1 to 20 V at 1 kHz. An LC cell capacitance model and a dual-cell model were adopted to obtain the dielectric anisotropy, and the capacitance–voltage curves of six LC materials were plotted. The threshold voltage of Fréedericksz transition was analysed, and a finite difference iterative method was used to attain specific values of three elastic constants. The influence of molecular structure on the dielectric and elastic constants was finally analysed. Experimental results showed that the introduction of meta-difluoro group would increase the dielectric anisotropy and reduce the threshold voltage of LC. As the length of the alkyl carbon chain increased, the dielectric anisotropy would have an odd–even alternation effect, which would lead to changes in the elastic constants of LC.  相似文献   
10.
Conductive hydrogels with ionic compounds possess great potential for the development of soft smart devices. A dielectric scarfskin is typically required for these devices to prevent short circuiting, leading to devices with lower stretchability than the hydrogel. Henceforth, commonly used dielectric materials, such as PDMS and Ecoflex, cannot be largely stretched. Hydrogel devices with ultrastretchability are required to accommodate hostile application environments. Herein, we propose a hydrogel fiber coated with a dielectric layer that can be stretched to over 2000% of its initial length. The fiber remains conductive when stretched to ~1300%. In addition, the core/sheath hydrogel fiber can be endowed with a variety of functional properties, such as electroluminescence (EL), photoluminescence (PL), and magnetic‐responsiveness, demonstrating scalability of the resultant fiber. The present work can pave the way for numerous next‐generation soft devices, such as smart textiles and wearable electronics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 272–280  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号