首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  国内免费   1篇
  完全免费   3篇
  力学   8篇
  2021年   2篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  1994年   1篇
  1988年   1篇
排序方式: 共有8条查询结果,搜索用时 203 毫秒
1
1.
变厚度壁板损伤容限特性研究   总被引:6,自引:0,他引:6  
从损伤容限设计概念出发,进行了变厚度壁板的裂纹尖端应力强度因子、剩余强度、裂纹扩展寿命分析,充分讨论等重量设计原则下变厚度壁板的可靠性、安全性,提出变厚度壁板损伤容限设计原则。给出的变厚度壁板应力强度因子是由基本构型因子组合而成,由此可以直观地看出各参数地影响,同时为工程应用中获取应力强度因子提供简洁有效的途径。  相似文献
2.
The fatigue and damage tolerance behaviour of pre-corroded 2024 T351 aluminum alloy specimens has been investigated and compared to the behaviour of the uncorroded material. The experimental investigation was performed on specimens pre-corroded in exfoliation corrosion environment and included the derivation of S–N and fatigue crack growth curves as well as measurements of fracture toughness. The fatigue crack growth tests were performed for different stress ratios R. To obtain reference material behaviour all mechanical tests were repeated under the same conditions for uncorroded specimens. For the corroded material an appreciable decrease in fatigue resistance and damage tolerance was obtained. The results of the experimental investigation were discussed under the viewpoint of corrosion and corrosion-induced hydrogen embrittlement of the 2024 aluminum alloy. The need to account for the influence of pre-existing corrosion on the material’s properties in fatigue and damage tolerance analyses of components involving corroded areas was demonstrated.  相似文献
3.
疲劳设计方法的进展   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对早期疲劳设计方法,包括无限寿命设计、安全寿命设计、破损-安全寿命设计、损伤容限设计作了简单的回顾,对可靠性设计新方法作了详尽描述,同时还对疲劳寿命估算中的名义应力法与局部应力应变法进行了比较,最后对今后这课题的研究提出了一些建议。  相似文献
4.
The paper proposes a new approach for shape optimisation with fatigue life as the design objective. Conventional designs often incorporate stress optimisation that aims at reducing stress concentrations around a structural boundary by minimising the peak stress. However, this is only an effective and sufficient measure for an ‘ideal’ or ‘flaw-less’ structure. It is a well-known fact that flaws (cracks) are inevitably present in most structures. This emphasises the need to investigate the influence of cracks on optimised shapes. Numerical modelling of cracks using the Finite Element Method requires a fine mesh to model the singularity at crack tips, which makes fracture calculations computationally expensive. Furthermore, for a damage tolerance based optimisation, numerous cracks are to be considered at various arbitrary locations in a structure, and fatigue life evaluation needs to be repeated for each crack at every iteration. This makes the optimisation process extremely computationally inefficient for practical purpose. Moreover, the lack of information concerning crack size, orientation, and location makes the formulation of the optimisation problem difficult. As a result, there has been inadequate research to consider fracture parameters, such as fatigue life, in the optimisation objective. To address this, the paper presents an approach for the shape optimisation of damage tolerant structures with fatigue life as the design constraint.The damage tolerance based optimisation was performed using a number of nonlinear programming algorithms, namely the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method, the Fletcher Reeves (Conjugate Direction) method, and the Sequential Unconstrained Minimisation Technique (SUMT). These methods were extended for optimising the fatigue life in the presence of numerous surface cracks. A significant enhancement in fatigue life was achieved for various crack cases consisting of different initial and final crack sizes. It is shown that the fatigue life optimised shapes can be considerably different from the corresponding stress optimised solution. This emphasises the need to explicitly consider fatigue life as a distinct design objective when optimising damage tolerant structures. A fatigue life optimisation leads to the generation of a ‘near uniform’ fatigue critical surface. The design space near the ‘optimal’ region was found to be relatively flat. This means that the precise identification of the local/global optimum solution is not critical, because a significant structural performance enhancement can be achieved in the ‘near’ optimal region. An additional benefit of fatigue life optimisation is that the resulting optimised shapes may even be lighter than the stress optimised designs. To verify the optimal solutions obtained using the nonlinear programming algorithms, the results were compared with those obtained using a heuristic optimisation method (Biological algorithm). The solutions predicted by both the methods, employing inherently different (gradient-based and gradient-less) algorithms, were found to agree very well.  相似文献
5.
Experimental studies of fatigue crack growth in aluminium alloys have shown that, at the low-to-mid stress intensity factor range, there is often a log-linear relationship between the crack length and the fatigue life. These observations have led to the development of the generalised Frost–Dugdale crack growth law, which allowed the accurate prediction of fatigue crack growth from Region I. For this research paper the ‘generalised Frost–Dugdale’ law was used to perform an optimisation study of 7050-T7451 Aluminium structures. The structural optimisation procedure proposed integrates geometrical modelling, structural analysis and optimization into one complete and automated computer-aided design process. The results from the structural optimisation study compared the ‘generalised Frost–Dugdale’ law and the traditional Paris law. Gradient-less, gradient-based optimisation algorithm and an enumeration scheme were considered in this investigation. The enumeration scheme takes advantage of a cluster computer architecture which enables a visualisation of the solution space allowing verification and validation of the optimisation algorithm. The results indicated that the optimal geometrical shape and predicted fatigue life depended on the crack sizes, structural geometry, boundary conditions and fatigue crack growth law. As a result, this procedure illustrates that for the design of light weight structures, a fatigue based optimisation used in conjunction with visualisation of the solution space may provide a viable design methodology. The importance of non-destructive inspection (NDI) and its role in determining optimal structural geometries is also revealed. Furthermore, the possibility of the application of the generalised Frost–Dugdale model in design optimisation has been demonstrated. This procedure has the potential to be applied to structures with complex structural configurations taking into account crack propagation in Region I.  相似文献
6.
车轴是高速列车关键承载部件, 承受着源自车体、轨道的各种载荷,其疲劳行为直接关乎列车运行安全. 疲劳裂纹往往具有较强的隐蔽性和突然性,由车轴断裂发生的列车脱轨事件具有灾难性,因此确保车轴在运行中不发生失效事故, 对高速列车可靠运行至关重要.高速列车实际运营中, 车轴外表面受到各种异物击打, 会形成深度达毫米级的缺陷,破坏车轴表面完整性, 严重威胁车辆安全.本研究采用空气炮装置预制合金钢车轴小试样异物致损(foreign object damage, FOD)缺陷,采用扫描电子显微镜和体视显微镜观测损伤特征.开展高周疲劳试验获得光滑试样和FOD损伤小试样的疲劳S-N曲线,考虑载荷模式、表面质量和尺寸系数推证出全尺寸车轴的疲劳性能.断口分析表明, 裂纹于FOD附近多处位置萌生, 并在不同平面内连续扩展,最终汇聚为一个半椭圆形裂纹. 基于Peterson公式和El Haddad模型估算异物冲击速度100 m/s和138 m/s试样的理论疲劳极限远低于试验结果, 过于保守; 同时也远低于标准推荐值, 偏于危险. 最后,采用修正的Miner理论公式估算含FOD实物车轴的服役寿命,满足最低25年的服役寿命.  相似文献
7.
巨大的制动热能导致高铁制动盘面出现热斑或热点,形成沿径向扩展的热疲劳裂纹,严重危及行车安全.通过仿真获得热疲劳裂纹扩展规律,据此制定出合适、经济的检测周期,具有重要意义.基于断裂力学理论,采用扩展有限单元法和自主研发的裂尖网格加密技术,得到热点形成规律,植入半椭圆形裂纹进行热疲劳断裂仿真,得到制动速度为400 km/h时的裂纹扩展寿命曲线,预测结果与制动盘运用寿命基本一致.仿真结果为制动盘轻量化设计、服役寿命评估及无损检测方案制定提供了重要的理论支撑.  相似文献
8.
冯太华  汪勇 《实验力学》1994,9(2):98-106
纤维增强复合材料结构的耐久性/损伤容限设计是目前飞机设计中极为关注的问题,但是,有关这方面的理论分析尚未成熟,本文通过对复合材料盒段的耐久性/损伤容限的试验研究,得到一些有关复合材料结构耐久性/损伤容限设计的结呆,可供复合材料结构设计和进一步理论探讨引介。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号