首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3608篇
  免费   296篇
  国内免费   231篇
化学   1868篇
晶体学   11篇
力学   1717篇
综合类   22篇
数学   222篇
物理学   295篇
  2023年   10篇
  2022年   25篇
  2021年   40篇
  2020年   64篇
  2019年   67篇
  2018年   64篇
  2017年   103篇
  2016年   132篇
  2015年   127篇
  2014年   190篇
  2013年   247篇
  2012年   157篇
  2011年   206篇
  2010年   184篇
  2009年   199篇
  2008年   204篇
  2007年   210篇
  2006年   238篇
  2005年   207篇
  2004年   239篇
  2003年   186篇
  2002年   124篇
  2001年   115篇
  2000年   88篇
  1999年   90篇
  1998年   62篇
  1997年   79篇
  1996年   69篇
  1995年   63篇
  1994年   54篇
  1993年   57篇
  1992年   43篇
  1991年   44篇
  1990年   30篇
  1989年   28篇
  1988年   24篇
  1987年   21篇
  1986年   12篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1971年   3篇
  1968年   1篇
  1957年   1篇
排序方式: 共有4135条查询结果,搜索用时 79 毫秒
1.
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156  相似文献   
2.
A series of spray dried zeolitic imidazolate frameworks (ZIFs = ZIF‐8, ZIF‐67, and Zn/Co‐ZIF) are used as a catalyst for the bulk ring‐opening polymerization of δ‐valerolactone without any co‐catalyst to generate polyvalerolactone. Interestingly, using the same catalyst under the same reaction conditions could manipulate the structure of the product polymer, and thus its physical properties. Thus, using a dried substrate leads to the formation of the cyclic polymer while a linear polymer was formed on using the commercially available substrate. An activated monomer mechanism has been suggested where the propagating zinc alkoxide undergoes an intramolecular transesterification to release cyclic or linear polyvalerolactone. The ROP of δ‐VL without drying shows that the polymeric zwitterions have little tendency to cyclize in the presence of moisture. At 140 °C, ZIF‐8 shows a superior catalytic activity resulting in the production of cyclic polyvalerolactone having a high molecular weight as compared to ZIF‐67 or Zn/Co‐ZIF due to the presence of highly active sites. The catalyst could be recycled and reused without any significant loss of catalytic activity.  相似文献   
3.
4.
Self-healing materials exhibit the ability to repair and to recover their functionality upon damage. Here, we report on an investigation into preparation and characterization of shape memory assisted self-healing coatings. We built on past work in which poly(ε-caprolactone) electrospun fibers were infiltrated with a shape memory epoxy matrix and delve into fabricating and characterizing a coating with the same materials, but employing a blending approach, polymerization induced phase separation. After applying controlled damage, the ability of both coatings to self-heal upon heating was investigated. In both methods, coatings showed excellent thermally induced crack closure and protection against corrosion, with the blend approach being more suitable for large-scale applications given its process simplicity. Two different approaches to the preparation of shape memory-based self-healing coatings were compared for their ability to heal structurally and functionally by heating. These two approaches, electrospinning versus polymerization-induced phase separation were found to feature comparable and quite complete healing, with the latter system offering the advantage of facile processing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1415–1426  相似文献   
5.
Well‐defined 1,4‐diketo‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole (DTDPP) labeled polycaprolactones (PCL) with different chain lengths were synthesized and characterized. The effect of polymer chain lengths on the optical properties of DTDPP in solid states was studied by UV‐Vis absorption spectroscopy as well as steady‐state and dynamic fluorescence spectroscopies. Our results indicate that when the PCL side chain is extended to a certain length, the intermolecular aggregation of DTDPP units can be reduced significantly due to segregation effect of PCL. This approach offers a new facile strategy to address the common problem of aggregation‐caused quenching existing in organic fluorophores. These highly fluorescent biodegradable PCL polymers may find broad biomedical applications such as fluorescence‐based bioimaging and tissue engineering. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1032–1042  相似文献   
6.
开放式、综合性量测实验的设计与应用,在巩固基础理论知识的同时,能够有效培养学生的动手实践能力、数据处理及分析能力,一定程度代表着大学物理实验课程的教学模式改革方向。以PN结物理特性的测量实验为例,基于通用型仪器与元器件的积木式组合,设计出简单、适用的实验电路;t=17.95℃时所采集的原始实验数据经三种模式回归分析,比较验证了PN结扩散电流与电压间遵循的玻尔兹曼分布律;计算出的玻尔兹曼常数与FD-PN-4测定仪的量测值相比,其结果说明了开放式测量实验方法的有效性。  相似文献   
7.
This study reports an application of trichloroethanol (TCE) as a bifunctional initiator for the synthesis of block copolymers (BCPs) by organocatalyzed ring‐opening polymerization (OROP) and atom transfer radical polymerization (ATRP). TCE was employed to synthesize a low dispersity poly (valerolactone) macroinitiator, which was subsequently used for the ATRP of tert‐butyl methacrylate. While it is known that TCE can serve as an initiator in ATRP, the ability to induce polymerization under OROP is reported for the first time. The formation of well‐defined BCPs was confirmed by gel permeation chromatography and 1H NMR. Computational studies were performed to obtain a molecular‐level understanding of the ring‐opening polymerization mechanism involving TCE as initiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 563–569  相似文献   
8.
Herein the first reported preparation of diblock copolymers of the polyethylene‐like polyester poly(ω‐pentadecalactone) (PPDL) via a combination of enzymatic ring‐opening polymerization (eROP) and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization techniques is described. PPDL was synthesized via eROP using Novozyme 435 as a catalyst and a bifunctional initiator/chain transfer agent (CTA) appropriate for the eROP of ω‐pentadecalactone (PDL) and RAFT polymerization of acrylic and styrenic monomers. Chain growth of the PPDL macro‐CTA was performed to prepare acrylic and styrenic diblock copolymers of PPDL, and demonstrates a facile, metal‐free, and “greener” alternative to preparing acrylic diblock copolymers of polyethylene (PE). Diblock copolymer architecture was substantiated via analysis of 1H NMR spectroscopic, UV‐GPC chromatographic, DSC onset crystallization (Tc), and MALDI‐ToF mass spectrometric data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3326–3335  相似文献   
9.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   
10.
Since extraction of the naturally occurring mussel‐foot proteins is expensive and time‐consuming, routes towards synthetic analogues are continuously being explored. Often, these methods involve several protection and deprotection steps, making the synthesis of synthetic analogues time‐consuming and expensive as well. Herein, we show that UV‐initiated thiol‐ene coupling between a thiol‐functional dopamine derivative and an allyl‐functional aliphatic polycarbonate can be used as a fast and facile route to dopa‐functional materials. Different thiol‐to‐allyl ratios and irradiation protocols were used and it was found that nearly 50% of the allyl groups could be functionalized with dopa within short reaction times, without the need of protecting the catechol. It is also demonstrated herein that the dopa‐functional polymers can be used to form self‐healing gels through complexation with Fe3+ ions at increased pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2370–2378  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号