首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  力学   2篇
  2022年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
针对地磁方向适配性分析时人工特征提取主观性较强、所取特征难以表达深层的结构性特征的问题,并为了进一步提高方向适配性分析的准确率,提出了一种基于并行卷积神经网络的地磁方向适配性分析方法。首先,从不同角度建立了地磁场在6个代表方向上的适配性分析图;然后,从同一磁场的不同角度出发,利用卷积神经网络自动完成了特征学习,得到了更为全面的方向适配性特征描述;最后,在并行卷积神经网络所得特征的基础上,利用BP网络建立了地磁方向适配性的分析模型。仿真结果证明,该方法可以有效避免人工特征提取和计算等复杂步骤,实现了地磁方向适配性分析的自动化,而且可以获得优于传统网络和单路卷积神经网络的准确率。  相似文献
2.
针对相同特征长度不同钝体的尾迹结构相近,肉眼难于分辨的问题,提出了一种基于卷积神经网络的钝体尾迹识别方法,并在竖直肥皂膜水洞的典型钝体模型尾迹实验中获得高准确率验证.实验平台由自建竖直肥皂膜实验装置、钝体模型(方柱、圆柱和三角柱)及图像采集系统组成,可基于光学干涉法实现对不同速度下钝体肥皂膜尾迹的高清持续拍摄.所建立卷积神经网络识别模型由输入层、卷积层、池化层、全连接层和分类层组成,其中,卷积层和池化层用于提取尾迹的深层次特征信息,而全连接层和分类层构成识别分类模式来分类输出图像对应的钝体类型或雷诺数.通过将9000张尾迹图像数据集导入卷积神经网络模型,以数据驱动方式建立了具有钝体形状或雷诺数识别能力的尾迹特征识别模型.结果表明,该模型对相同雷诺数下识别钝体形状的准确率达97.6%(识别300张不同形状钝体尾迹图像),对不同雷诺数下识别钝体形状的准确率达96%(识别1200张不同雷诺数尾迹图像),即使将不同钝体形状和雷诺数下尾迹图像混放一起,其钝体形状和雷诺数识别准确率也可以达到91%(识别1500张混放尾迹图像).该方法为进一步利用人工智能提取流体尾迹中的物理信息提供借鉴.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号