首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   4篇
  国内免费   5篇
化学   62篇
力学   2篇
物理学   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
A new cyanate ester monomer, 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane has been synthesized and characterized. Epoxy modified with 4, 8 and 12% (by weight) of cyanate ester were made using epoxy resin and 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane and cured by using diaminodiphenylmethane. The cyanate ester modified epoxy matrix systems were further modified with 4, 8 and 12% (by weight) of bismaleimide (N,N′-bismaleimido-4,4′-diphenylmethane). The formation of oxazolidinone and isocyanurate during cure reaction of epoxy and cyanate ester blend was confirmed by IR spectral studies. Bismaleimide-cyanate ester-epoxy matrices were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. Thermal studies indicate that the introduction of cyanate ester into epoxy resin improves the thermal degradation studies at the expense of glass transition temperature. Whereas the incorporation of bismaleimide into epoxy resin enhances the thermal properties according to its percentage content. However, the introduction of both cyanate ester and bismaleimide influences the thermal properties according to their percentage content. DSC thermogram of cyanate ester modified epoxy and bismaleimide modified epoxy show unimodel reaction exotherms. The thermal degradation temperature and heat distortion temperature of the cured bismaleimide modified epoxy and cyanate ester-epoxy systems increased with increasing bismaleimide content. The morphology of the bismaleimide modified epoxy and cyanate ester-epoxy systems were also studied by scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
合成了一系列结构不同和链长短不一的双马来酰亚胺,并对其结构和性能作了表征,同时研究了它们的固化反应和固化产物的性能。用双马来酰亚胺和二烯丙基化合物反应制造了增韧树脂,研究了该树脂的固化和热稳定性。  相似文献   
3.
含聚硅氧烷链双马来酰亚胺的合成与表征   总被引:8,自引:0,他引:8  
合成了N-(4-羟基苯基)马来酰亚胺和含聚硅氧烷链双马来酰亚胺,并用FTIR、1HNMR、元素分析、GPC、DTA和TG对其进行了表征。  相似文献   
4.
5.
This paper outlines the synthesis and characterization of O‐allyl aralkyl phenolic (O‐allyl Xylok, OAX) resins having low melt viscosity and its Alder‐ene blends with 2, 2′‐bis 4‐[(4′‐maleimido phenoxy) phenyl] propane. The blends manifested a three‐stage curing pattern that converged to a two‐stage pattern on enhancing the maleimide content. The polymerization kinetics of typical allyl and maleimide rich resin systems showed apparent activation energy increasing and pre‐exponential factor decreasing from ene to the Diels–Alder step. Increased allyl content improved mechanical and impact properties of the composites at ambient temperature, although it diminished the retention of interlaminar shear strength at elevated temperature. Increased maleimide content of the resin was conducive for the higher rigidity for the composite and its retention at elevated temperature. A substantial increase in Tg (from 153°C to 280°C) and thermal stability was observed with an increase in maleimide content. High allyl content resulted in improved mechanical properties thanks to better resin–reinforcement interaction as revealed from morphological analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
In this paper, two novel bismaleimide resins based on 9, 9-bis[4-(4-maleimidophenoxy) phenyl] fluorene (PFBMI), 9, 9-bis[4-(4-maleimidophenoxy)-3-methylphenyl]fluorene (MFBMI), and 2, 2’-diallyl bisphenol A (DABPA) were prepared. Their curing mechanism and curing kinetic were carefully investigated by Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The thermal mechanical properties of the composites based on these BMI resins and the glass cloth were obtained by Dynamic mechanical analysis (DMA), displaying that the novel resins whose Tg were 296°C and 289°C had excellent thermal performance. In addition, Thermogravimetric analysis (TGA) results showed that both the cured PD and MD resins possessed good thermal stability, and their T5% were all higher than 410°C.  相似文献   
7.
1. INTRODUCTION Poly (diphenyl oxide) (DPO) resins are a series of heat-resisting thermosetting resins. In 1960s, the West House Company applied them to make H class insulting materials and got an extensive use successfully [1]. But due to the three main…  相似文献   
8.
Epoxy resins modified by an organosoluble phosphorus‐containing bismaleimide (3,3′‐bis(maleimidophenyl) ­phenylphosphine oxide; BMPPPO) were prepared by simultaneously curing epoxy/diaminodiphenylmethane (DDM), and BMPPPO. The resulted epoxy resins were found to exhibit glass transition temperatures as high as 212 °C, thermal stability at temperatures over 350 °C, and excellent flame retardancy with Limited oxygen index (LOI) values around 40. Incorporation of BMPPPO into epoxy resins via the thermosetting blend was demonstrated to be an effective way to enhance the thermal properties and flame retardancy simultaneously. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
This study reports the characteristics of gel‐type dye‐sensitized solar cells (DSSCs), fabricated with gel‐type electrolyte containing poly‐1,1′‐(methylenedi‐4,1‐phenylene)bismaleimide (PBMI), or poly‐1,1′‐(3,3′‐dimethyl‐1,1′‐biphenyl‐4,4′‐diyl)bismaleimide (PDBBMI), or poly‐N,N′‐(4‐methyl‐1,3‐phenylene)bismaleimide (PMPBMI), prepared by in situ polymerization of the corresponding monomer without an initiator at 30 °C. Incorporating 0.3 wt % content of exfoliated alkyl‐modified nanomica (EAMNM) into PBMI‐gelled electrolyte leads to higher short‐circuit current density (Jsc = 17.14 mA cm?2) and efficiency (η = 7.02%) than that of neat PBMI‐gel electrolyte (Jsc = 15.32 mA cm?2, η = 6.41%). Incorporating 0.3 wt % EAMNM into PBMI‐gelled electrolyte results in remarkably stable device performance under continuous light soaking under one sun (100 mW cm?2) at 55 °C. The efficiency of DSSCs based on PBMI/0.3 wt % EAMNM‐gelled electrolyte drops by only 1.7% (η = 6.93%) after 500 h of continuous light soaking. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
10.
Through the functionalization of multiwalled carbon nanotubes (MWCNTs) by 0,0′‐diallylbisphenol A (DBA), the interface situation between MWCNTs and bismaleimide (BMI) was improved, as detected by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). The improved interface situation was considered to be the main reason for the huge increased microhardness value and greatly improved the microtribological property of MWCNTs/BMI composites. Besides, the wear mechanism for the composite was also believed to be related to the interfacial situation. The rough wavelike worn surface of pure BMI resin is attributed to its poor load capacity. The smoother waterfall‐shape worn surface of MWCNTs/BMI is related to the interface formed by the addition of MWCNTs while the ultrasmooth worn surface of DBA modified MWCNTs/BMI is due to the greatly improved interfacial interaction of the composite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号