首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1571篇
  免费   50篇
  国内免费   37篇
化学   57篇
晶体学   1篇
力学   454篇
综合类   14篇
数学   374篇
物理学   758篇
  2024年   1篇
  2023年   11篇
  2022年   13篇
  2021年   27篇
  2020年   58篇
  2019年   25篇
  2018年   34篇
  2017年   43篇
  2016年   63篇
  2015年   60篇
  2014年   91篇
  2013年   114篇
  2012年   65篇
  2011年   123篇
  2010年   93篇
  2009年   84篇
  2008年   76篇
  2007年   98篇
  2006年   63篇
  2005年   61篇
  2004年   52篇
  2003年   50篇
  2002年   55篇
  2001年   38篇
  2000年   29篇
  1999年   35篇
  1998年   20篇
  1997年   32篇
  1996年   22篇
  1995年   13篇
  1994年   23篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   8篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有1658条查询结果,搜索用时 125 毫秒
1.
The evolution of surface gravity waves is driven by nonlinear interactions that trigger an energy cascade similarly to the one observed in hydrodynamic turbulence. This process, known as wave turbulence, has been found to display anomalous scaling with deviation from classical turbulent predictions due to the emergence of coherent and intermittent structures on the water surface. In the ocean, waves are spread over a wide range of directions, with a consequent attenuation of the nonlinear properties. A laboratory experiment in a large wave facility is presented to discuss the sensitivity of wave turbulence on the directional properties of model wave spectra. Results show that the occurrence of coherent and intermittent structures become less likely with the broadening of the wave directional spreading. There is no evidence, however, that intermittency completely vanishes.  相似文献   
2.
The Note is concerned with a feasibility study of time reversal in a non-homogeneous elastic medium, from data recorded in an acoustic medium. Our aim here is to determine the presence and some physical properties of elastic “inclusions” (unknown, not observable solid objects, characterized by their elastic properties) from partial observations of acoustic waves scattered by these inclusions. A finite element numerical method, based on a variational acousto-elastodynamics formulation, is derived and used to solve the forward, and then, the time-reversed problem. A criterion, derived from the reverse time migration framework, is introduced, to help construct images of the inclusions to be determined. Numerical illustrations on configurations that mimic the breast cancer configuration are proposed, and show that one can differentiate between two inclusions, even with different properties.  相似文献   
3.
We relate the distribution characters and the wave front sets of unitary representation for real reductive dual pairs of type I in the stable range.  相似文献   
4.
This paper deals with the initial boundary value problem for strongly damped semilinear wave equations with logarithmic nonlinearity uttΔuΔut=φp(u)log|u| in a bounded domain ΩRn. We discuss the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under some appropriate conditions. Moreover, we derive the finite time blow up results of weak solutions, and give the lower and upper bounds for blow-up time by the combination of the concavity method, perturbation energy method and differential–integral inequality technique.  相似文献   
5.
随着风力机的大型化,风电机组对环境的影响不容忽视,必须对风力机气动噪声进行预测和控制。选取基于NACA、DU翼型的某风力机叶片作为研究基准,采用修正BPM半经验模型计算叶片的气动噪声特性,通过改变翼型族、弦长、机组运行状态、风切变指数、来流风向参数,研究叶片外形几何参数、机组运行工况对叶片气动噪声源的影响。计算结果从多个角度总结出水平轴风力机叶片气动噪声的变化规律,为开发高效低噪风电叶片提供参考。  相似文献   
6.
The tidal energy industry is progressing rapidly, but there are still barriers to overcome to realise the commercial potential of this sector. Large magnitude and highly variable loads caused by waves acting on the turbine are of particular concern. Composite blades with in-built bend-twist elastic response may reduce these peak loads, by passively feathering with increasing thrust. This could decrease capital costs by lowering the design loads, and improve robustness through the mitigation of pitch mechanisms. In this study, the previous research is extended to examine the performance of bend-twist blades in combined wave–current flow, which will frequently be encountered in the field. A scaled 3 bladed turbine was tested in the flume at IFREMER with bend-twist composite blades and equivalent rigid blades, sequentially under current and co-directional wave–current cases. In agreement with previous research, when the turbine was operating in current alone at higher tip speed ratios the bend-twist blades reduced the mean thrust and power compared to the rigid blades. Under the specific wave–current condition tested the average loads were similar on both blade sets. Nevertheless, the bend-twist blades substantially reduced the magnitudes of the average thrust and torque fluctuations per wave cycle, by up to 10% and 14% respectively.  相似文献   
7.
We present the study of the wave motion in the Talbot interferometer with an additional element such as a lens for all related audiences. Our solutions are in the analytic form. A general principle of the Talbot effect, which is the optical near-field effect, is the Fresnel diffraction. The Fresnel integral is rather complicated. We therefore introduce an alternative method which is based on the wave propagation through the transmission functions of the grating and the lens. Our method has been proved by a simple experimental setup.  相似文献   
8.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   
9.
This paper is concerned with the propagation of nonlinear gravity waves over a thin horizontal plate submerged in water of shallow depth. An unsteady solution of the problem is obtained by use of the theory of directed fluid-sheets for the two-dimensional motion of an incompressible and inviscid fluid. Particular attention is paid to the calculation of the nonlinear wave-induced vertical and horizontal forces and overturning moment by solving the Level I Green–Naghdi equations. The theoretical formulation of the problem is given in this paper (Part I), while the results due to solitary and cnoidal waves, and comparisons with the available experimental data are given in a companion paper under the same title (Part II).  相似文献   
10.
针对传统CFD数值计算方法难以实现风力机动态旋转及其旋转状态下的流固耦合计算,本文结合格子玻尔兹曼(LBM)方法易于处理动态复杂边界的特点及大涡模拟(LES)方法在非稳态涡流结构捕捉上的优势,采用LBM-LES联合方法进行三维风力发电机整机气动性能及尾流结构仿真研究,同时采用尺度自适应方法对尾涡结构进行跟踪和精细化计算。针对NREL PhaseⅥ型试验机进行模拟,得到了与实验结果吻合的流动形态及尾流结构演变规律,分析了尾流区速度演变规律并对比了不同亚格子湍流模型对计算结果的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号