首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   23篇
  国内免费   107篇
化学   459篇
晶体学   4篇
力学   330篇
数学   196篇
物理学   495篇
  2024年   2篇
  2023年   85篇
  2022年   29篇
  2021年   32篇
  2020年   50篇
  2019年   32篇
  2018年   35篇
  2017年   45篇
  2016年   57篇
  2015年   45篇
  2014年   68篇
  2013年   106篇
  2012年   37篇
  2011年   78篇
  2010年   52篇
  2009年   89篇
  2008年   92篇
  2007年   85篇
  2006年   71篇
  2005年   51篇
  2004年   46篇
  2003年   40篇
  2002年   41篇
  2001年   25篇
  2000年   40篇
  1999年   18篇
  1998年   10篇
  1997年   17篇
  1996年   14篇
  1995年   13篇
  1994年   11篇
  1993年   13篇
  1992年   10篇
  1991年   6篇
  1989年   5篇
  1988年   10篇
  1987年   5篇
  1986年   3篇
  1985年   9篇
  1984年   1篇
  1983年   3篇
  1981年   3篇
排序方式: 共有1484条查询结果,搜索用时 15 毫秒
1.
Non-noble bifunctional electrocatalysts with robust activity and stability toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are greatly significant but challenging for Zn-air batteries. Here, in situ confinement of FeNx active sites in high porosity carbon framework (FeNx/CMCC) derived from chelate of carboxymethylcellulose (CMC) and iron ions were synthesized. Particularly, construction of FeNx within porous carbon framework accelerates the electron transfer and the sufficient utilization of active centers, and then expedites the reaction kinetics of ORR and OER. As expected, the optimized FeNx/CMCC exhibits superior ORR activity with a larger half-wave potential of 0.869 V. The rechargeable Zn-air battery delivers a higher power density of 99.6 mW/cm2 and a special capacity of 781.9 mA h/gZn at 10 mA/cm2, together with excellent durability of over 335 h. Remarkably, the as-assembled solid-state battery exhibits a higher open circuit voltage (OCV) of 1.5 V, a special capacity of 709.7 mA h/gZn, as well as prolonged cycling stability (90 h). Moreover, the flexible solid-state battery displays negligible loss of electrochemical performance under various bending angles, illustrating its potential application in flexible electronic devices.  相似文献   
2.
This paper proposes a generalized dynamics model and a leader-follower control architecture for skid-steered tracked vehicles towing polar sleds. The model couples existing formulations in the literature for the powertrain components with the vehicle-terrain interaction to capture the salient features of terrain trafficability and predict the vehicles response. This coupling is essential for making realistic predictions of the vehicles traversing capabilities due to the power-load relationship at the engine output. The objective of the model is to capture adequate fidelity of the powertrain and off-road vehicle dynamics while minimizing the computational cost for model based design of leader-follower control algorithms. The leader-follower control architecture presented proposes maintaining a flexible formation by using a look-ahead technique along with a way point following strategy. Results simulate one leader-follower tractor pair where the leader is forced to take an abrupt turn and experiences large oscillations of its drawbar arm indicating potential payload instability. However, the follower tractor maintains the flexible formation but keeps its payload stable. This highlights the robustness of the proposed approach where the follower vehicle can reject errors in human leader driving.  相似文献   
3.
Robot locomotion on rigid terrain or in fluids has been studied to a large extent. The locomotion dynamics on or within soft substrates such as granular material (GM) has not been fully investigated. This paper proposes a hybrid force model to simulate and evaluate the locomotion performance of a legged terrestrial robot in GM. The model incorporates an improved Resistive Force Theory (RFT) model and a failure-based model. The improved RFT model integrates the force components of individual leg elements over the curved leg portion submerged in GM at any moment during a full period of leg rotation. The failure-based model is applied in a bar drag model to yield the normal and the lateral forces of the individual RFT elements as functions of the locomotion depth and speed. The hybrid model is verified by the coincidence between the theoretical predictions and the experimental results. The hybrid model is used to analyze the effects of angular velocity and leg shape with high precision and can guide the design of the legs with any profiles. Our study reveals that the interactions between locomotor and substrate are determined by the locomotor structural characteristics, the nature of the substrate, and the control strategy.  相似文献   
4.
Calreticulin (CRT) is localized to and has functions in multiple cellular compartments, including the cell surface, the endoplasmic reticulum, and the extracellular matrix. Mutagenesis studies have identified several residues on a concave β-sheet surface of CRT critical for CRT binding to carbohydrate and other proteins/peptides. How the mutations of these key residues in CRT affect the conformation and dynamics of CRT, further influencing CRT binding to carbohydrates and other proteins to signal the important biological activities remain unknown. In this study, we investigated the effect of three key point mutations (C105A, C137A and W319A) on CRT conformation and dynamics via atomistic molecular dynamics simulations. Results show that these three key residues mutations induced the changes of CRT local backbone flexibility and secondary structure of CRT N-domain, which could further affect CRT’s binding activity. C137A mutation led to dramatic decrease of the overall size of CRT due to the P-domain fold back to the globular domain and formed new inter-domain contacts, which can cause blockage of CRT’s binding with other large substrates. Furthermore, for CRT concave β-strand surface patch containing lectin binding site, CRT C105A, C137A and W319A point mutation resulted in the changes in solvent accessible surface area, key residues’ side chain atom positions and dynamical correlated motions between residues. All these changes could directly affect CRT binding behavior. Results of this study provide molecular and structural insights into understanding the role of key residues of CRT in its binding behavior.  相似文献   
5.
《Current Applied Physics》2020,20(5):720-737
Roll-to-roll (R2R) production is an innovative approach and is fast becoming a very popular industrial method for high throughput and mass production of solar cells. Replacement of costly indium tin oxide (ITO), which conventionally has served as the transparent electrode would be a great approach for roll to roll production of flexible cost effective solar cells. Indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) are brittle and ultimately limit the device flexibility. Perovskite solar cells (PSCs) have been the centre of photovoltaic research community during the recent years owing to its exceptional performance and economical prices. The best reported PSCs fabricated by employing mesoporous TiO2 layers require elevated temperatures in the range of 400–500 °C which limits its applications to solely glass substrates. In such a scenario developing flexible PSCs technology can be considered a suitable and exciting arena from the application point of view, them being flexible, lightweight, portable, and easy to integrate over both small, large and curved surfaces.  相似文献   
6.
Multicanonical molecular dynamics based dynamic docking was used to exhaustively search the configurational space of an inhibitor binding to the N-terminal domain of heat-shock protein 90 (Hsp90). The obtained structures at 300 K cover a wide structural ensemble, with the top two clusters ranked by their free energy coinciding with the native binding site. The representative structure of the most stable cluster reproduced the experimental binding configuration, but an interesting conformational change in Hsp90 could be observed. The combined effects of solvation and ligand binding shift the equilibrium from a preferred loop-in conformation in the unbound state to an α-helical one in the bound state for the flexible lid region of Hsp90. Thus, our dynamic docking method is effective at predicting the native binding site while exhaustively sampling a wide configurational space, modulating the protein structure upon binding.  相似文献   
7.
We consider an infinite, homogenous linearly elastic beam resting on a system of linearly elastic supports, as an idealized model for a paper web in the middle of a cylinder-based dryer section. We obtain closed-form analytical expressions for the eigenfrequencies and the eigenmodes. The frequencies increase as the support rigidity is increased. Each frequency is bounded from above by the solution with absolutely rigid supports, and from below by the solution in the limit of vanishing support rigidity. Thus in a real system, the natural frequencies will be lower than predicted by commonly used models with rigid supports.  相似文献   
8.
The intermolecular interaction determines the photophysical properties of the organic aggregates, which are critical to the performance of organic photovoltaics. Here, excitonic coupling, an important intermolecular interaction in organic aggregates, between the π-stacking graphene quantum dots is studied by using transient absorption spectroscopy. We find that the spectral evolution of the ground state bleach arises from the dynamic variation of the excitonic coupling in the excited π-stacks. According to the spectral simulations, we demonstrate that the kinetics of the vibronic peak can be exploited as a probe to measure the dynamics of excitonic coupling in the excited π-stacks.  相似文献   
9.
It is well known that potentiometric sensors provide a versatile, cost-effective, and efficient platform for wearable applications. Unfortunately, mass production and commercialization of such devices is often constrained by the requirement of a calibration step, which is due to the poor sensor-to-sensor reproducibility and the need of conditioning the electrodes in the analyte before use. Herein, we fabricated calibration-free flexible sensors including ion-selective electrode and reference electrode by integrating single-walled carbon nanotubes (SWCNTs) with poly(3-octylthiophene) (POT) and applying on polyethylene terephthalate (PET) substrate. The developed sodium and potassium ion-selective electrodes (ISEs) display excellent repeatability, selectivity, stability as well as high sensor-to-sensor reproducibility, with a standard deviation of as low as 1.0 mV in artificial sweat microliter samples volume.  相似文献   
10.
Integrating the advantages of both inorganic ceramic and organic polymer solid-state electrolytes, small-molecule solid-state electrolytes represented by LiI-3-hydroxypropionitrile (LiI-HPN) inorganic–organic hybrid systems possess good interfacial compatibility and high modulus. However, their lack of intrinsic Li+ conduction ability hinders potential application in lithium metal batteries until now, despite containing LiI phase composition. Herein, inspired by evolution tendency of ionic conduction behaviors together with first-principles molecular dynamics simulations, we propose a stepped-amorphization strategy to break the Li+ conduction bottleneck of LiI-HPN. It involves three progressive steps of composition (LiI-content increasing), time (long-time standing), and temperature (high-temperature melting) regulations, to essentially construct a small-molecule-based composite solid-state electrolyte with intensified amorphous degree, which realizes efficient conversion from an I to Li+ conductor and improved conductivity. As a proof, the stepped-optimized LiI-HPN is successfully operated in lithium metal batteries cooperated with Li4Ti5O12 cathode to deliver considerable compatibility and stability over 250 cycles. This work not only clarifies the ionic conduction mechanisms of LiI-HPN inorganic–organic hybrid systems, but also provides a reasonable strategy to broaden the application scenarios of highly compatible small-molecule solid-state electrolytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号