首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  完全免费   2篇
  力学   31篇
  2018年   1篇
  2014年   1篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有31条查询结果,搜索用时 35 毫秒
1.
Temperature control of electrohydrodynamic micro heat pipes   总被引:3,自引:0,他引:3  
Active thermal control was achieved by using an electrohydrodynamically (EHD) assisted micro heat pipe array. A simulation model of temperature control of EHD micro heat pipes was established in a Matlab Sinulink environment. An experimental model was designed and fabricated to verify the model and identify the factors most influential to the thermal control via EHD micro heat pipe array. Good correspondence between simulations and experiments was achieved. Electric field intensity, set-point temperature and the gap between the upper and lower set-point temperatures were shown to have a dramatic influence on the temperature control.  相似文献
2.
A simple model for predicting bubble volume and shape at detachment in reduced gravity under the influence of electric fields is described in the paper. The model is based on relatively simple thermodynamic arguments and relies on and combines several models described in the literature. It accounts for the level of gravity and the magnitude of the electric field. For certain conditions of bubble development the properties of the bubble source are also considered. Computations were carried out for a uniform unperturbed electric field for a range of model parameters, and the significance of model assumptions and simplifications is discussed for the particular method of bubble formation. Experiments were conducted in terrestrial conditions and reduced gravity (during parabolic flights in NASAs KC-135 aircraft) by injecting air bubbles through an orifice into the electrically insulating working fluid, PF5052. Bubble shapes visualized experimentally were compared with model predictions. Measured data and model predictions show good agreement. The results suggest that the model can provide quick engineering estimates concerning bubble formation for a range of conditions (both for formation at an orifice and boiling) and such a model reduces the need for complex and expensive numerical simulations for certain applications. a Major axis of spheroid (m) - a m Measured bubble height (m) - b Minor axis of spheroid (m) - b m Measured bubble width (m) - A, B, C, F Parameters of the Kumar-Kuloor model - a/b Computed aspect ratio - a m /b m Measured aspect ratio - D Orifice diameter (m) - E Magnitude of the electric field (V/m) - g Gravitational acceleration (m/s2) - g t Terrestrial gravity (g t = 9.81 m/s2) - N w Electrical Weber number - p Pressure (Pa) - Q Volume flow rate (m3/s) - r Radius of the spherical bubble (m) - R Radius of curvature at the tip of the bubble (m) - t Time (s) - t Time interval (s) - T Temperature (°C) - U Electrical potential (V) - u Velocity (m/s) - V Volume (m3) - x, y Dimensionless coordinates of the Cartesian coordinate system - x, y Scaled coordinates, Cheng-Chaddock model - X, Y Dimensional coordinates of the Cartesian coordinate system - Characteristic wave number (m–1) - Eötvös number - Absolute dielectric permittivity (F/m) - Contact angle (deg.) - Gibbs free energy (J) - Surface tension (N/m) - Dynamic viscosity (Pa s) - Density (kg/m3) - cr Critical value - d Detachment - eq Equilibrium - g Gas - K Refers to the Kumar-Kuloor model - l Liquid - m Measured value - t Terrestrial  相似文献
3.
Electrostatic effects on pressure drop in tube flows   总被引:1,自引:0,他引:1  
Electrohydrodynamic effects on forced convection in tubes may have significant implications for enhancement of heat exchanger performance in heat pumps and other devices. Of particular concern in such applications is the possibility of increased pressure drop associated with electrostatic discharge. Large frictional losses could substantially increase the required pumping power, offsetting performance gains associated with improved heat transfer rates.

This articles describes a series of experiments designed to determine the effects of corona discharge on pressure fields for air flow in cylindrical tubes. Experiments were performed with a single concentric electrode in the tube and with two nonconcentric electrodes. Measurements were performed at potentials from the onset of measurable current to near the spark-over point and at Reynolds numbers from 103 to 2 × 104. Friction factors were seen to increase as much as 250 percent over the values obtained in the absence of an applied electric field. Results suggest that the electrostatic effect on pressure drop is very sensitive to current density, Reynolds number, and electrode configuration.  相似文献

4.
Fluid property effects on electrohydrodynamic (EHD) heat transfer enhancement were investigated. Heat transfer, pressure drop, electrical power requirements, and the transition between the viscous dominated and electrically dominated flow regimes as a function of fluid properties were examined using three cooling oils having widely varying physical properties. Low viscosity and low electrical conductivity gave the greatest heat transfer enhancement for a given electrical power input. The required electrical power to achieve a specified heat transfer enhancement was greater for working fluids that had a small charge relaxation time, defined as the ratio of the electrical permittivity to the electrical conductivity. These results correlate well with available experimental and analytical data. A theoretical prediction of the effect of fluid properties and forced flow rate on the onset of EHD enhancement was experimentally verified. The onset of significant EHD heat transfer enhancement occurs most readily in low viscosity liquids at low Reynolds number flows for a given electrical power input.  相似文献
5.
An analytical study of slow modulation has been made of cylindrical interface between two inviscid streaming fluids, in the presence of a relaxation of electrical charges at the interface, and stressed by an axial electric field. A new technique based on the perturbation theory, to derive the non-linear evolution equations has been introduced. These equations are combined to yield a non-linear Ginzburg–Landau equation and a non-linear modified Schrödinger equation describing the evolution of wave packets. The linear analysis showed that the streaming has a destabilizing effect and the electric field has stabilizing influence associated with parameters condition involving the electric conductivity and permittivity of the fluids. While the non-linear approach indicated that the streaming may become unstable for sufficiently high velocities, with a new condition on the material properties, involving weak electric relaxation times in both fluids.  相似文献
6.
Dielectric liquids that show striking electrorheological (ER) effects are formulated by controlling the conductivity. Although the viscosity is increased on the application of a d.c. field, the flow of electrified fluids is Newtonian in the plain electrodes with smooth surfaces. When the liquids are sandwiched between the electrodes with flocked fabrics, the viscosity behavior is converted from Newtonian to shear-thinning flow. In electric fields, the convective flow is induced over the system due to the electrohydrodynamic(EHD) effect. The interactions between EHD convection and external shear give rise to the additional energy dissipation and in turn the increase in viscosity. The ER effects of simple liquids are very attractive in application to new fluid devices.  相似文献
7.
The time-dependent pulse-periodic action of a surface electric discharge on a flat-plate laminar boundary layer is simulated theoretically. The effect of the discharge is estimated within the framework of the numerical solution of the boundary value problem for the time-dependent two-dimensional compressible boundary layer with additional terms in the momentum and energy conservation equations simulating the force and thermal action of the discharge on the gas flow with allowance for the pressure gradient across the boundary layer induced by the corresponding body force component. The effect of certain parameters of the problem formulated above on the gas velocity induced by the discharge in the boundary layer is also estimated.  相似文献
8.
Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0–16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.  相似文献
9.
A new macroscopic model for swelling porous media is derived based on a rigorous upscaling of the microstructure. Considering that at the microscale the medium is composed of a charged solid phase (e.g. clay platelets, bio-macromolecules, colloidal or polymeric particles) saturated by a binary monovalent aqueous electrolyte solution composed of cations + and anions – of an entirely dissociated salt, the homogenization procedure is applied to scale up the pore-scale model. The microscopic system of governing equations consists of the local electro-hydrodynamics governing the movement of the electrolyte solution (Poisson–Boltzmann coupled with a modified Stokes problem including an additional body force of Coulombic interaction) together with modified convection–diffusion equations governing cations and anions transport. This system is coupled with the elasticity problem which describes the deformation of the solid phase. Novel forms of Terzaghi's effective principle and Darcy's law are derived including the effects of swelling pressure and osmotically induced flows, respectively. Micromechanical representations are provided for the macroscopic physico-chemical quantities.  相似文献
10.
Summary  The electrohydrodynamic Kelvin–Helmholtz instability of the interface between two uniform superposed viscoelastic (B′ model) dielectric fluids streaming through a porous medium is investigated. The considered system is influenced by applied electric fields acting normally to the interface between the two media, at which there are no surface charges present. In the absence of surface tension, perturbations transverse to the direction of streaming are found to be unaffected by either streaming and applied electric fields for the potentially unstable configuration, or streaming only for the potentially stable configuration, as long as perturbations in the direction of streaming are ignored. For perturbations in all other directions, there exists instability for a certain wavenumber range. The instability of this system can be enhanced (increased) by normal electric fields. In the presence of surface tension, it is found also that the normal electric fields have destabilizing effects, and that the surface tension is able to suppress the Kelvin–Helmholtz instability for small wavelength perturbations, and the medium porosity reduces the stability range given in terms of the velocities difference and the electric fields effect. Finally, it is shown that the presence of surface tension enhances the stabilizing effect played by the fluid velocities, and that the kinematic viscoelasticity has a stabilizing as well as a destabilizing effect on the considered system under certain conditions. Graphics have been plotted by giving numerical values to the parameters, to depict the stability characteristics. Received 27 March 2000; accepted for publication 3 May 2001  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号