首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15219篇
  免费   3433篇
  国内免费   5721篇
化学   9566篇
晶体学   465篇
力学   3156篇
综合类   494篇
数学   3191篇
物理学   7501篇
  2024年   15篇
  2023年   496篇
  2022年   585篇
  2021年   514篇
  2020年   521篇
  2019年   678篇
  2018年   459篇
  2017年   651篇
  2016年   702篇
  2015年   747篇
  2014年   1396篇
  2013年   1123篇
  2012年   1204篇
  2011年   1222篇
  2010年   1096篇
  2009年   1248篇
  2008年   1388篇
  2007年   1140篇
  2006年   1093篇
  2005年   994篇
  2004年   897篇
  2003年   840篇
  2002年   688篇
  2001年   680篇
  2000年   534篇
  1999年   505篇
  1998年   434篇
  1997年   344篇
  1996年   381篇
  1995年   360篇
  1994年   275篇
  1993年   209篇
  1992年   249篇
  1991年   224篇
  1990年   175篇
  1989年   152篇
  1988年   64篇
  1987年   37篇
  1986年   19篇
  1985年   14篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
数学均匀化方法是计算周期复合材料结构的有效方法之一,单胞边界条件施加的合理性直接决定了影响函数控制方程的计算效率和精度,进而影响均匀化弹性参数和摄动位移的计算精度.本文首先将单胞影响函数作为虚拟位移处理,给出了单胞在结构中真实的边界条件,结果表明,四边固支适合作为二维结构单胞边界条件;其次,针对二维结构提出了超单胞周期边界条件,有效提高了影响函数的计算精度,并使用与虚拟位移相对应的虚拟势能泛函验证超单胞周期边界条件的有效性;最后,利用数值分析验证多尺度渐进展开方法的计算精度,强调了二阶摄动的必要性.  相似文献   
2.
通过一个典型的Bratu问题,研究了小波Galerkin法(WGM)在非线性分岔问题求解方面的应用.首先,利用基于Coiflet的小波Galerkin法,对一维和二维Bratu方程进行离散;然后针对单参数问题,推导了追踪解曲线的伪弧长格式和直接计算极值型分岔点的扩展方程;针对双参数问题,推导了追踪稳定边界的伪弧长格式和求解尖点型分岔点的扩展方程.数值结果表明,基于小波Galerkin法的非线性分岔计算不仅具有更高的计算精度,而且能够有效地捕捉双参数分岔问题的折迭线和尖点突变曲面.该算例展示了基于小波Galerkin法的数值分岔计算的具体过程及其求解多参数分岔问题复杂行为的应用潜力.  相似文献   
3.
本文采用高压均质结合对辊挤压工艺对天然凹凸棒石进行棒晶解离得到了纯度较高和比表面积较大(133.7 m2/g)的纳米解离凹凸棒石. 进一步通过机械共混法分别将天然凹凸棒石和纳米解离凹凸棒石与硅橡胶生胶复合制备了天然凹凸棒石-硅橡胶和纳米解离凹凸棒石-硅橡胶材料,研究了天然凹凸棒石和纳米解离凹凸棒石对凹凸棒石/硅橡胶复合材料热氧化降解和老化性能的影响. 结果表明,天然凹凸棒石-硅橡胶和纳米解离凹凸棒石-硅橡胶在300 oC热氧老化处理0.5 h后,相比于纯硅橡胶,初始5%失重温度从385 oC提高至396∽399 oC. 系列表征结果表明,天然凹凸棒石和纳米解离凹凸棒石增强了纳米粒子与硅橡胶之间的相互作用从而抑制了纳米颗粒聚集,并且可显著提高硅橡胶侧链Si-CH3的保存率,从而提高了该复合材料的热氧化降解和老化性能. 此外,纳米解离凹凸棒石可大大抑制纳米粒子的长大;因此老化后,纳米解离凹凸棒石-硅橡胶表现出了比硅橡胶(10.6%、7.4%和5.0%)更高的拉伸强度、断裂伸长率和撕裂强度保留率(40.6%、34.9% 和30.1%).  相似文献   
4.
介绍了一种使用钢环和碳纤维复合材料环共同预紧方式的两面顶超高压模具,该结构在全钢环两面顶模具的基础上,使用一层碳纤维复合材料环代替最外层钢环,得到了一种具有碳纤维复合材料环的超高压模具。这种设计避免了大直径钢环难以制造加工的问题,形成一种以钢环与复合材料环共同对压缸预紧的新型预紧方式。数值分析表明:该模具结构设计具有可行性,可以在一定程度上减小压缸的周向应力、最大剪切应力和等效应力。此外,对碳纤维复合材料环进行了失效判别。  相似文献   
5.
《光散射学报》2021,(1):40-44
β-Ga_2O_3是一种宽禁带半导体材料(E_g=4.8 eV)。研究β-Ga_2O_3在高压(高应力)条件下的相稳定性和晶格动力学特性对其材料应用具有重要的参考价值。目前关于Ga_2O_3在高压下的晶格动力学特性研究较少,且Ga_2O_3的β→α的高压相变压力仍然具有争议。本工作采用基于金刚石压砧(DAC)的高压拉曼光谱技术研究了Ga_2O_3的高压拉曼光谱特性与相变行为。研究发现β→α高压不可逆相变发生在22 GPa。本工作给出了α-Ga_2O_3和β-Ga_2O_3各拉曼振动模的压力系数与格林艾森参数,并发现β-Ga_2O_3的高频和低频拉曼模在压力系数方面存在着较大的非谐特性。  相似文献   
6.
N-乙基吡咯是吡咯分子的一个乙基取代衍生物,它的激发态衰变动力学目前为止很少被研究. 本文利用飞秒时间分辨光电子成像的实验方法研究N-乙基吡咯分子S1态的衰变动力学. 实验采用241.9和237.7 nm的泵浦激发波长. 在241.9 nm激发下,得到5.0±0.7 ps,66.4±15.6 ps和1.3±0.1 ns三个寿命常数. 在237.7 nm激发下,得到2.1±0.1 ps和13.1±1.2 ps两个寿命常数. 所有寿命常数都归属为S1态的振动态. 本文并对不同S1振动态的弛豫机理进行了讨论.  相似文献   
7.
杨骁  应方乾  孟哲 《力学季刊》2021,42(1):108-119
利用裂纹诱导弦挠度函数,建立了悬臂Euler-Bernoulli 中开闭裂纹位置、深度、初始张开角等损伤参数的识别方法.为此,首先将梁中开闭裂纹等效为单向扭转弹簧,给出了考虑裂纹缝隙效应的裂纹梁等效抗弯刚度,并得到悬臂Euler-Bernoulli 开闭裂纹梁弯曲挠度的显式闭合解及裂纹诱导弦挠度函数,证明了裂纹诱导弦挠度的分段线性函数.其次,基于单向扭转弹簧的性质,建立了通过多步加载进行梁中开闭裂纹参数及其上下侧属性的识别方法.最后,通过数值算例验证了本文所建立的开闭裂纹损伤识别方法的适用性和可靠性,考察了裂纹分布位置、深度和初始张开角以及裂纹识别区间和挠度测量误差等参数对识别结果的影响,结果表明:当裂纹处于张开状态时,裂纹处裂纹诱导弦挠度斜率改变量随着施加荷载的增加而增加;当裂纹闭合时,其裂纹诱导弦挠度斜率改变量将保持为常量;裂纹损伤参数的识别误差随测量误差的增加而增加,但整体识别结果具有较高的精度,较好的鲁棒性.  相似文献   
8.
探索LaAlO_3/SrTiO_3(LAO/STO)界面产生的新奇物理特性对理解关联电子系统中多自由度耦合和设计功能材料器件具有重要的价值.本文通过脉冲激光沉积方法在SrTiO_3基底上制备了LAO/STO薄膜,研究了正面照射LAO/STO膜面和侧面照射LAO/STO界面时的光伏效应,探讨了LAO/STO界面对光伏效应的影响.研究结果表明,在同样光照能量下侧面照射LAO/STO界面产生的光电压远高于正面照射LAO/STO膜面产生的光电压,说明LAO/STO界面对光伏效应有明显的增强作用.通过偏压调控可以进一步增强照射LAO/STO界面产生的光电压,当偏压为60 V时, LAO/STO样品的位置探测灵敏度达到了36.8 mV/mm.这些研究结果为设计场调控位置敏感探测器等新型光电子器件提供了新的思路.  相似文献   
9.
心理数据具有秩统计量、总体分布未知、数据模糊性等特征,利用秩检验、Fisher判别以及人工神经网络等非参数统计方法对心理行为进行"画像"与分析,不仅可以勾画出仿真程度较高的心理行为"画像",而且可以降低对心理行为分类、判别与预测时可能存在的"失真"危险。在基于6732份数据的认知采择水平的言语认知画像模拟实例中,证实了动词、方位词等言语认知投射认知采择心理行为的"画像"效应。  相似文献   
10.
建立了O形密封圈与C形组合密封圈的轴对称模型,分析了两种密封圈的静、动密封性能和过孔性能,并计算出了不同压力下密封圈的摩擦阻力。对比两种密封圈的性能,结果表明:O形密封圈适用于较低压力的静密封;高压静密封、压力超过15MPa时的动密封及过孔工况下,O形密封圈的使用需增加挡圈;因O形圈变形严重,局部应力较大,易发生疲劳失效,不适合用于高压下频繁运动和需要过孔的动密封工况;C形组合密封圈的摩擦阻力较小,在动密封和过孔的工况下表现出良好的性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号