首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   341篇
  国内免费   63篇
化学   198篇
晶体学   4篇
力学   468篇
综合类   3篇
数学   261篇
物理学   1366篇
  2024年   11篇
  2023年   39篇
  2022年   54篇
  2021年   72篇
  2020年   93篇
  2019年   65篇
  2018年   90篇
  2017年   95篇
  2016年   104篇
  2015年   73篇
  2014年   162篇
  2013年   135篇
  2012年   78篇
  2011年   132篇
  2010年   132篇
  2009年   119篇
  2008年   106篇
  2007年   92篇
  2006年   93篇
  2005年   81篇
  2004年   69篇
  2003年   65篇
  2002年   42篇
  2001年   41篇
  2000年   45篇
  1999年   13篇
  1998年   31篇
  1997年   25篇
  1996年   29篇
  1995年   22篇
  1994年   15篇
  1993年   14篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1957年   1篇
排序方式: 共有2300条查询结果,搜索用时 109 毫秒
1.
2.
Utilising cavitation for enhancing oxidative desulphurization has been investigated for nearly-two decades with recent investigations shifting focus from low-capacity acoustic cavitation (AC) to scalable hydrodynamic cavitation (HC). This work focuses on developing a viable means for removing thiophene’s from fuels. In the first phase of this work, use of vortex based HC devices for removal of single and dual ring thiophenes from dodecane was investigated. HC was shown to be able to remove single ring thiophene from dodecane without using any external catalyst or additives. However, in absence of catalyst or additives, it was not possible to remove dual ring thiophenes such as dibenzothiophene using HC. Therefore, in the second phase of this work, various strategies based on use of catalyst or additives to augment cavitation based process were investigated. AC based experiments were opted for shortlisting suitable catalysts and additives for intensifying cavitation based processes. The influence of using oxidant (H2O2) and carboxylic acid catalysts on efficacy of removal of dual ring thiophenes is presented. Several conditions were tested, and the optimal volumetric ratios of 0.95 v/v % H2O2 and 6.25 v/v % HCOOH was identified and utilised throughout the remainder of the study. Regeneration of extractant which accumulates oxidised sulphur species from dodecane was also investigated using AC. The additives and process conditions reported in this work are useful for enhancing desulphurization performance.  相似文献   
3.
This article scrutinizes the features of viscous dissipation in the stagnation point flow past through a linearly stretched Riga wall by implementing Cattaneo-Christov heat flux model. Viscous dissipation is carried out in Cattaneo-Christov diffusion analysis for the first time in this letter. As a result of Cattaneo-Christov model, some extra terms of viscous dissipation are appeared in the energy equation. These extra terms of viscous dissipation are missing in the literature. On the utilization of suitable transformations, the equations governing the problem are reduced under the boundary layer approximation into the non-linear and dimensionless ordinary differential equations. Convergent approach is utilized to solve the dimensionless governing equations. The solution thus acquired is used to highlight the effects of emerging parameters on velocity distribution and fluid's temperature through the graphs. Features of the drag force (or skin friction co-efficient) are graphically interpreted. It is noticed that the presence of modified Hartman number helps to reduce the fluid's temperature but enhances the velocity profile. Further an enlargement in the value of thermal time relaxation parameter helps to decrease the temperature distribution.  相似文献   
4.
5.
The kinetics of the dissipation of chlortetracycline in the aquatic environment was studied over a period of 90 days using microcosm experiments and distilled water controls. The distilled water control experiments, carried out under dark conditions as well as exposed to natural sunlight, exhibited biphasic linear rates of dissipation. The microcosm experiments exhibited triphasic linear rates of degradation both in the water phase (2.7 × 10−2, 7 × 10−3, 1.3 × 10−3 μg g−1 day–1) and the sediment phase (3.4 × 10−2, 6 × 10−3, 1 × 10−3 μg g−1 day–1). The initial slow rate of dissipation in the dark control (3 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation and hydrolysis, whereas the subsequent fast rate (1.8 × 10−3 μg g−1 day1) was attributed to a combination of evaporation, hydrolysis, and microbial degradation. For the sunlight-exposed control, the initial slow rate of dissipation (1.5 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation, hydrolysis, and photolysis, whereas the subsequent fast rate was attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation (5.1 × 10−3 μg g−1 day–1). The initial fast rate of dissipation in the water phase of the microcosm experiment is attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation, whereas all subsequent slow rates in the water phase and all rates of degradation in the sediment phase are attributed to microbial degradation of the colloidal and sediment particle adsorbed antibiotic. A multiphase zero-order kinetic model is presented that takes into account (a) dissipation of the antibiotic via evaporation, hydrolysis, photolysis, microbial degradation, and adsorption by colloidal and sediment particles and (b) the dependence of the dissipation rate on the concentration of the antibiotic, type and count of microorganisms, and type and concentration of colloidal particles and sediment particle adsorption sites within a given aquatic environment.  相似文献   
6.
7.
Hao Zhou 《中国物理 B》2022,31(4):44702-044702
Owing to the influence of the viscosity of the flow field, the strength of the shedding vortex decreases gradually in the process of backward propagation. Large-scale vortexes constantly break up, forming smaller vortexes. In engineering, when numerical simulation of vortex evolution process is carried out, a large grid is needed to be arranged in the area of outflow field far from the boundary layer in order to ensure the calculation efficiency. As a result, small scale vortexes at the far end of the flow field cannot be captured by the sparse grid in this region, resulting in the dissipation or even disappearance of vortexes. In this paper, the effect of grid scale is quantified and compared with the viscous effect through theoretical derivation. The theoretical relationship between the mesh viscosity and the original viscosity of the flow field is established, and the viscosity term in the turbulence model is modified. This method proves to be able to effectively improve the intensity of small-scale shedding vortexes at the far end of the flow field under the condition of sparse grid. The error between the simulation results and the results obtained by using fine mesh is greatly reduced, the calculation time is shortened, and the high-precision and efficient simulation of the flow field is realized.  相似文献   
8.
Investigating the dilatancy, acoustic emission and failure characteristics of fissured rock are significant to ensure their geotechnical stability. In this paper, the uniaxial and triaxial compression experiments with AE monitoring under different loading rates were carried out on fissured rock specimens with the same geometrical distribution of two pre-existing flaws. The dilatancy and AE activity of these specimens were discussed, and the effects of the confining pressure and loading rate on the mechanical parameters and failure characteristics were analyzed. The results show that the exponential strength criterion is more suitable than the Mohr–Coulomb strength criterion to characterize the strength characteristics of fissured rock. The crack evolution and failure characteristics of fissured rock specimens are more complicated than those of intact rock specimens. The failure characteristics of the fissured rock follow the tensile shear coalescence model, crack branching occurs with increasing the loading rate, and the multi-section coalescence model is verified with increasing the confining pressure. The phenomena of stress drop and yield platform usually occur after the dilatancy onset, the specimen does not fail instantaneously, and the propagation and coalescence of cracks cause a sharp increase in the AE signals, circumferential strain, and volumetric strain.  相似文献   
9.
The remarkable properties of acoustic metamaterials have attracted massive researches and applications, especially on low-frequency sound absorptions. Currently, most of the acoustic metamaterial absorbers employ resonances in plastic cavities, and their structural strengths are important in many circumstances, especially in harsh environment. However, studies of metamaterials including this point are very scarce. Here, we propose an acoustic metamaterial for low-frequency (<500 Hz) absorptions, composed of three nested square split tubes with inverted opening directions. The efficiency of the absorber is investigated both numerically and experimentally, and absorptions at the peeks are found to exceed 90% and the frequency can be effectively adjusted by tuning its geometric parameters. We further test its yield strength under compression and confirm its buckling behavior happens from the outmost layer. This tunable acoustic metamaterial with a fairly good mechanical strength may lead to broad applications in noise reduction.  相似文献   
10.
We put forth a dynamic computing framework for scale‐selective adaptation of weighted essential nonoscillatory (WENO) schemes for the simulation of hyperbolic conservation laws exhibiting strong discontinuities. A multilevel wavelet‐based multiresolution procedure, embedded in a conservative finite volume formulation, is used for a twofold purpose. (i) a dynamic grid adaptation of the solution field for redistributing grid points optimally (in some sense) according to the underlying flow structures, and (ii) a dynamic minimization of the in built artificial dissipation of WENO schemes. Taking advantage of the structure detection properties of this multiresolution algorithm, the nonlinear weights of the conventional WENO implementation are selectively modified to ensure lower dissipation in smoother areas. This modification is implemented through a linear transition from the fifth‐order upwind stencil at the coarsest regions of the adaptive grid to a fully nonlinear fifth‐order WENO scheme at areas of high irregularity. Therefore, our computing algorithm consists of a dynamic grid adaptation strategy, a scale‐selective state reconstruction, a conservative flux calculation, and a total variation diminishing Runge‐Kutta scheme for time advancement. Results are presented for canonical examples drawn from the inviscid Burgers, shallow water, Euler, and magnetohydrodynamic equations. Our findings represent a novel direction for providing a scale‐selective dissipation process without a compromise on shock capturing behavior for conservation laws, which would be a strong contender for dynamic implicit large eddy simulation approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号