首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  国内免费   1篇
  力学   5篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
为研究自然通风冷却塔在风载荷下的屈曲模式及临界风速,用立体打印技术打印了三个不同壁厚的缩尺模型,在风洞中完成了稳定性试验,并将实验结果与有限元计算结果进行对比分析.研究表明,模型失稳发生在弹性阶段,其壁厚与喉部半径之比是确定临界载荷的一个关键参数.实验得到的临界风压值同现有规范的设计相接近,约为有限元计算的1/4,说明我国现有规范中基于冷却塔整体稳定性得到的最小壁厚是偏保守的.  相似文献
2.
3D打印技术目前已广泛应用在医疗、航空、汽车、建筑等领域,文中做了3D打印技术在岩石力学领域的应用尝试.利用3D打印技术制作两种类型的石膏试件进行实验室单轴压缩试验.实验表明:3D打印技术可以快速、精确、灵活地制作出所需复杂尺寸的试件;打印石膏试件密度较低;3D打印石膏试件具有强度低和塑性强的特性;简单标准试件的力学性质具有可重复性,含裂纹试件力学性质差异较大;含裂纹试件的制作尚存在技术上的困难.  相似文献
3.
3D打印金属技术因其个性化及可用于加工复杂零件等显著优点,在医用骨植入体领域得到了快速发展,但3D打印金属材料的孔洞缺陷所引起的应力集中现象严重降低了其疲劳强度,限制了3D打印生物金属材料的运用.本文针对3D打印Ti-6Al-4V合金超声疲劳试样,分析了Micro CT扫描试样得到的三维图像,获得了试样内孔洞缺陷的数量与体积;选择体积分数占比最大的孔洞,采用有限元方法分析了三种不同孔洞分布形式下的局部应力集中现象.研究发现,因空间位置的不同,独立的孔洞、接近自由表面的孔洞、相邻的孔洞三种不同孔洞的分布情况的应力集中系数差异显著.研究结果在一定程度上解释了目前EBM技术打印Ti-6Al-4V合金的孔洞缺陷如何对材料受力后的局部应力情况产生影响.  相似文献
4.
This article broadens the scheme previously developed to associate topology optimization with additive manufacturing through the use of a virtual skeleton, consisting in solving the same physical problem with a discrete approach and then with a continuum one. This procedure for 3D designs is applied to various domain geometries, to demonstrate its pertinence on high-resolution industrial cases. An algorithm searching for the best printing direction, exploring the solid angle, is also described and validated; the surface-shaped presentation of the result allows immediate understanding of the influence of the discrete problem parameters, while its running time is much lower than a unique continuum optimization simulation, which proves the attractiveness of the method. In the three examples studied, the procedure outputs exhibit greater printability than the ones produced by traditional methods in each of the printing direction tested, albeit responsibility is left to the final user to choose his best trade-off. Furthermore, the unprintable zones are readily displayed to be either reworked or supported. Explanations about increase of convergence likelihood on discrete structures despite the geometry complexity of an industrial application are also provided and demonstrated.  相似文献
5.
Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号