首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1767篇
  免费   446篇
  国内免费   106篇
化学   20篇
晶体学   8篇
力学   802篇
综合类   12篇
数学   282篇
物理学   1195篇
  2023年   49篇
  2022年   40篇
  2021年   47篇
  2020年   39篇
  2019年   51篇
  2018年   34篇
  2017年   42篇
  2016年   55篇
  2015年   48篇
  2014年   112篇
  2013年   83篇
  2012年   89篇
  2011年   111篇
  2010年   95篇
  2009年   113篇
  2008年   150篇
  2007年   96篇
  2006年   89篇
  2005年   108篇
  2004年   87篇
  2003年   70篇
  2002年   79篇
  2001年   79篇
  2000年   84篇
  1999年   55篇
  1998年   42篇
  1997年   48篇
  1996年   48篇
  1995年   33篇
  1994年   56篇
  1993年   31篇
  1992年   40篇
  1991年   34篇
  1990年   35篇
  1989年   23篇
  1988年   10篇
  1987年   12篇
  1986年   1篇
  1985年   1篇
排序方式: 共有2319条查询结果,搜索用时 15 毫秒
1.
金晓威  赖马树金  李惠 《力学学报》2021,53(10):2616-2629
流体运动理论上可用Navier?Stokes方程描述, 但由于对流项带来的非线性, 仅在少数情况可求得方程解析解. 对于复杂工程流动问题, 数值模拟难以高效精准计算高雷诺数流场, 实验或现场测量难以获得流场丰富细节. 近年来, 人工智能技术快速发展, 深度学习等数据驱动技术可利用灵活网络结构, 借助高效优化算法, 获得对高维、非线性问题的强大逼近能力, 为研究流体力学计算方法带来新机遇. 有别于传统图像识别、自然语言处理等典型人工智能任务, 深度学习模型预测的流场需满足流体物理规律, 如Navier?Stokes方程、典型能谱等. 近期, 物理增强的流场深度学习建模与模拟方法快速发展, 正逐渐成为流体力学全新研究范式: 根据流体物理规律选取网络输入特征或设计网络架构的方法称为物理启发的深度学习方法, 直接将流体物理规律显式融入网络损失函数或网络架构的方法称为物理融合的深度学习方法. 研究内容涵盖流体力学降阶模型、流动控制方程求解领域.   相似文献   
2.
移动加热器法(THM)生长碲锌镉晶体时,界面稳定性对晶体生长的质量有很大影响。本文基于多物理场有限元仿真软件Comsol建立了THM生长碲锌镉晶体的数值模拟模型,讨论了Te边界层与组分过冷区之间的关系,对不同生长阶段的物理场、Te边界层与组分过冷区进行仿真研究,最后讨论了微重力对物理场分布的影响,并对比了微重力与正常重力下的生长界面形貌。模拟结果表明,Te边界层与组分过冷区的分布趋势是一致的,在不同生长阶段,流场中次生涡旋的位置会发生移动,从而导致生长界面的形貌随着生长的进行发生变化,同时微重力条件下形成的生长界面形貌最有利于单晶生长。因此,在晶体生长的中前期,对次生涡旋位置的控制和对组分过冷的削弱,是THM生长高质量晶体的有效方案。  相似文献   
3.
主要利用支持向量机的机器学习方法开展估算大气光学湍流廓线的研究。通过选取沿海地区实测探空数据,利用温度、压强、相对湿度、风速、风速切变和温度切变实测廓线数据,依据支持向量机估算得到不同日期的大气光学湍流廓线,并与实际测量值进行比较。误差分析结果表明:在2018-05-05和2018-05-10,估算的大气光学湍流廓线与实际测量廓线的均方根误差分别为0.4461和0.3939,相关性分别为70.42%和62.17%。研究证明:根据实测数据训练学习得到的支持向量机模型能够较为准确地估算沿海地区大气光学湍流廓线,虽有一定误差,但大致趋势吻合,验证了支持向量机方法估算大气光学湍流廓线的可行性,从而为利用常规气象探空数据直接估算大气光学湍流廓线,并为建立相关模式的可能性打下基础。  相似文献   
4.
陈贤亮  符松 《力学学报》2022,54(11):2937-2957
边界层由层流向湍流的转捩是高超声速飞行器设计面临的重大空气动力学问题. 随着飞行速域与空域的不断拓展, 高超声速高焓边界层中的高温气体效应会使得量热完全气体假设失效, 从而深刻影响流动转捩过程. 相关研究涉及多个学科, 是典型的多物理场耦合问题. 近年来, 随着相关飞行器技术的快速发展, 高超声速高焓边界层转捩问题的重要性越来越得到体现, 相关研究已成为国际上的热点领域. 本文综述相关研究进展, 首先介绍目前常用的高温气体物理模型, 尤其关注热化学非平衡模型, 并介绍激波捕捉、激波装配和边界层方程解等常用的高焓流动求解方法, 以及相关风洞和飞行试验技术的进展. 然后综述高温气体效应对转捩过程中的感受性、模态增长、瞬态增长和非线性作用等的影响的相关研究, 其中流向不稳定性中出现较大增长率的第三模态和超声速模态引起了广泛的研究兴趣. 最后进行总结, 并对未来发展略作展望.   相似文献   
5.
为了研究局部凸起对边界层转捩的影响,采用转捩SST模型分别对亚临界、临界和超临界状态下带突起的圆柱绕流问题进行了数值模拟,分析了不同Reynolds数下带突起的圆柱绕流问题的近壁面流动特征以及表面时均压力与摩擦力系数的分布和凸起对圆柱表面流动分离以及转捩的影响,对比了有无凸起两侧圆柱表面时均压力、摩擦力系数的不同. 结果表明:当来流Reynolds数处于临界区时,气流在圆柱上表面凸起处形成了3个反向旋转的漩涡,之后随着θ的增大,发生了流动分离和流动转捩现象;对于不同Reynolds数下的来流,圆柱上表面的凸起可以使气流发生转捩的位置提前;圆柱上表面的凸起使流速增大、压强降低,从而导致圆柱产生升力,随着来流Reynolds数的增大,其升力逐渐变大.   相似文献   
6.
本文基于实测的热力湍流探空数据,使用WR95方法识别低云的垂直结构,对比分析了低云与晴空天气下大气折射率结构参数Cn~2、气象条件和大气稳定度的平均统计结果.结果表明,低层薄云对Cn~2起伏变化的影响微乎甚微,仅仅表现出轻微增大的趋势,云底Cn~2相对于晴空天气平均增大1.6倍,云顶之上最大程度增大2.5倍.低层中厚云在云顶处Cn~2相对于晴空天气增大了3.80—6.61倍,且云顶区域Cn~2增大的幅度大于云底区域.云底区域大气湍流特性受到地面热力驱动与低云冷却的联合作用,沉降气流与地面向上气流发生了耦合,增强了风切变,Cn~2在这一高度附近也出现了增强.综合对比晴空和有云天气Cn~2大小可知,云对Cn~2的增强效应大致在10–16量级.一方面,风切变在云顶处或者云顶之上达到最大值;另一方面,因为云顶短波辐射增温和长波辐射冷却的共同作用,云顶之上会形成不同厚度的逆温层,致使云顶处位温变化率急剧增大,Brunt-V...  相似文献   
7.
对于空间环境中近乎无碰撞的等离子体,可采用Vlasov方程进行理论描述,基于Vlasov方程,讨论了等离子体湍流能量传输和耗散的过程:由亚格子应力引起的尺度间的能量传输,电场做功,压强张量做功(压强张量与速度梯度张量的相互作用).通过混合Vlasov-Maxwell(HVM)数值模拟,进一步研究了能量传输通道之间的联系与区别.不同能量传输通道尽管在不同尺度起主要作用,但其空间的分布非常相似,即各能量传输通道之间存在一定的空间相关.结合近年数值模拟和卫星观测的结果,可以大致概括等离子体湍流从磁流体动力学(magnetohydrodynamic,MHD)尺度到动理学尺度的能量传输过程.   相似文献   
8.
超声速流动中非线性EASM湍流模式应用研究   总被引:1,自引:0,他引:1  
针对超声速复杂流动区域精确模拟的需要,发展了基于k-ω可压缩修正形式的非线性显式代数雷诺应力模式(EASM),提高了该模式对超声速复杂流动的数值模拟精度。通过对二维超声速凹槽和三维双椭球的数值计算表明,与SA和SST常规线性涡黏性湍流模式比较,非线性的EASM模式对大分离以及剪切层流动结构的刻画能力更精细,对剪切层再附区的压力及摩擦系数分布模拟更加精确;EASM模式能够准确地模拟二次激波引起的压强和热流分布情况。  相似文献   
9.
曾赛  杜选民  范威 《应用声学》2020,39(3):482-491
水下对转螺旋桨流致辐射噪声的预报对于水下目标的特征提取和分类识别具有重要意义。由桨叶的旋转引起的湍流场是水下对转螺旋桨流致辐射噪声的源场。分述了水下对转螺旋桨湍流边界层脉动、旋转干涉效应和空化效应引发的水动力噪声机制和研究进展,比较了目前工程应用中的3种对转螺旋桨流致辐射噪声预报方法的特点。在分析对转螺旋桨流致辐射噪声数值预报难点的基础上,综述了对转螺旋桨流致辐射噪声计算方法的研究进展,指出间接数值模拟方法是工程中进行对转螺旋桨流致辐射噪声预报的有效方法。  相似文献   
10.
在EAST装置上安装了X模极化W波段多道相关反射仪,用于测量等离子体芯部密度涨落。该诊断利用低损耗(<3dB)多工器将4个不同频率(79.2GHz,85.2GHz,91.8GHz和96GHz)的微波耦合在一起,通过同一个天线发射。反射波由两个极向分离(~5cm)的天线接收,通过下变频技术实现外差测量。通过对两个极向天线接收的信号进行相关分析,获得芯部湍流垂直速度。对2018年低约束模式(L模)放电进行分析发现,在电子回旋共振加热(ECRH)等离子体中,芯部湍流垂直速度在电子逆磁漂移方向。而在注入同向中性束(co-NBI)后,芯部湍流垂直速度变为离子逆磁漂移方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号