首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   107篇
  国内免费   93篇
化学   43篇
力学   753篇
综合类   67篇
数学   40篇
物理学   106篇
  2023年   40篇
  2022年   48篇
  2021年   26篇
  2020年   36篇
  2019年   31篇
  2018年   16篇
  2017年   37篇
  2016年   34篇
  2015年   37篇
  2014年   40篇
  2013年   48篇
  2012年   39篇
  2011年   60篇
  2010年   46篇
  2009年   48篇
  2008年   35篇
  2007年   39篇
  2006年   50篇
  2005年   38篇
  2004年   42篇
  2003年   35篇
  2002年   24篇
  2001年   25篇
  2000年   21篇
  1999年   13篇
  1998年   10篇
  1997年   17篇
  1996年   9篇
  1995年   14篇
  1994年   3篇
  1993年   10篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
排序方式: 共有1009条查询结果,搜索用时 15 毫秒
1.
为探究混凝土在三向受压状态下的动态特性,利用自行研制的大型多功能三轴材料试验机,进行不同应变速率(10-5/s、10-4/s、10-3/s、10-2/s)下混凝土不同定侧压比(1:1、2:1、3:1、4:1)的动态真三轴抗压试验,研究了混凝土在动态抗压下的强度和变形特性。结果表明:混凝土在三向受压状态下表现出明显的应变率效应,峰值应力随着应变速率的增加先减小后增大,峰值应力减小最大幅度为5.42%而后开始增大,最大增幅为18.22%。而峰值应力随着侧压比的增大而增大,到达3:1时应力速率敏感性降低。混凝土的峰值应变在低侧压比(1:1和2:1)时随着应变速率的增加而减小,而在侧压比较高(3:1和4:1)时先减小再增大。随着应变速率的增加,裂纹开始从骨料处产生,塑性应变增大,导致峰值应变增大;在动态加载条件下,峰值应变随着侧压比的增大有先增大后减小的趋势。较高侧压比时混凝土的弹性模量随着应变速率的增加具有增大的趋势,最大增幅为240.66%。应力-应变曲线上升段随着应变速率增大越来越陡峭。试件的破坏形态随着侧压比的增大从柱状破坏变为斜剪破坏。  相似文献   
2.
钢-混凝土组合结构的抗爆性能已成为防护工程和反恐防爆等领域的研究热点。以钢-混凝土-钢组合板为例,利用有限元软件ABAQUS对爆炸载荷作用(爆距为2.5~7.5 m,TNT炸药量为50~100 kg)下该结构的破坏形态和动力学性能进行了数值模拟。研究结果表明,组合板的破坏形态与炸药量和爆距有关。炸药量越大,爆距越小,组合板的破坏程度越明显。当TNT炸药量为100 kg、爆距为2.5 m时,组合板发生明显的翘曲,出现了塑性铰。钢板的存在有效地抑制了核心混凝土的剥落。在爆距相同的条件下,炸药量越大,组合板的变形越明显,跨中挠度和峰值速度也越大。当炸药量相同(100 kg)时,与爆距为7.5 m相比,爆距为5.0 m时组合板的跨中挠度为其1.53倍,爆距为2.5 m时组合板的跨中挠度为其5.01倍。  相似文献   
3.
细观等效理论预测再生混凝土宏观力学参数北大核心CSCD   总被引:1,自引:1,他引:0  
预测分析再生混凝土各组分对再生混凝土宏观力学参数的影响是开展再生混凝土基本力学性能的一种方式.为了分析再生混凝土各组分对再生混凝土宏观力学参数的影响,根据再生混凝土的细观结构组成,建立了细观等效模型,利用扭转变形、细观夹杂理论、弹性等效思想和M-T模型方法,推导了由原生骨料、老界面层、老水泥砂浆、新界面层和新水泥砂浆等组成的再生混凝土的宏观力学参数预测模型.预测结果表明,随着再生骨料的取代率增加,水泥砂浆的含量不断增加,再生混凝土孔隙率也随之增大,导致再生混凝土的Poisson比随之增大,弹性模量、剪切模量和体积模量不断降低.模型的预测结果较好地反映了再生混凝土宏观力学参数随再生骨料取代率的增加不断变化的这一趋势,也为再生混凝土宏观力学参数的预测提供了一条简单实用的新方法,有利于再生混凝土基本力学性能的研究分析.  相似文献   
4.
为研究弹体侵彻厚混凝土靶的迎弹面成坑效应,总结了侵彻实验中的成坑现象,分析了经验公式对成坑深度、成坑直径和成坑角等成坑效应的预测效果;考虑了撞击速度、靶板强度、配筋以及弹体直径和质量等因素的影响,采用量纲分析方法建立了新型成坑效应计算公式及成坑阶段耗能计算公式;基于新型成坑效应计算公式,对成坑效应的影响因素和成坑耗能进行了参数化分析。结果表明:无量纲成坑深度受靶板强度、配筋率和弹体质量的影响较大;对于钢筋混凝土,成坑深度随撞击速度提升呈先增大后减小再增大的变化规律;在常见的侵彻速度和质量范围内,成坑角为15°~24°,质量对成坑角影响较小;迎弹面成坑耗能占弹体总动能的10%~25%,且配筋率和靶板强度对成坑耗能比例的影响较小;弹体质量越小,成坑阶段耗能占比越大。新型成坑效应计算公式对成坑深度、直径和角度的计算结果与实验数据吻合较好,可为侵彻弹体设计和工程防护提供参考。  相似文献   
5.
随着超高速动能武器的发展,长杆弹超高速侵彻混凝土靶机理成为当前的研究热点。为了探究长杆弹超高速侵彻混凝土靶的侵彻机理和开坑规律,本文中开展了TU1铜、Q235钢两类长杆弹以初速度1.8~2.4 km/s正侵彻强度26.5、42.1 MPa混凝土靶的超高速实验。结合文献和本文中的实验数据,对开坑直径和开坑体积进行量纲分析,基于开坑截面的弓形形貌几何关系,得到了开坑深度预测公式。结果表明:靶面开坑尺寸明显大于中低速侵彻时的靶面开坑尺寸,在分析侵彻机理的过程中不能忽略开坑阶段;弹体发生严重的长度缩短,直至最后完全侵蚀,弹洞半径明显大于弹体半径,说明长杆弹超高速侵彻半无限混凝土靶属于半流体侵彻机制。另外,在超高速侵彻条件下:弹体长度是影响侵彻深度的最主要参数;侵彻深度随弹体长度和密度的增大而增大,受弹体强度影响不大。  相似文献   
6.
在混凝土层析成像中,为了提高反演的准确性和计算效率,针对共轭梯度算法提出一种加权算法——概率加权共轭梯度算法.新算法不同于常规的加权算法,权重是加在成像单元上而不是方程上.为取得较好的权重因子和较好的迭代初始值,采用IART算法的权重和迭代初始值的选取方法.模拟算例和混凝土试验均表明这种加权算法的可行性.  相似文献   
7.
为深入研究内爆加载下岩土类材料的破坏机理,提出了一种新的爆炸裂纹检测算法,采用数字图像相关方法测量表面位移场和应变场,建立了裂纹扩展和扩张模型,并通过混凝土内爆试验观测裂纹扩展过程,研究了裂纹长度扩展与宽度扩张规律。结果表明,裂纹长度扩展是应力波和爆生气体共同作用的结果,裂纹最大扩展速度为225.95 m/s,平均速度为122.27 m/s,裂纹总长159.92 mm,长度扩展止于1.75 ms;裂纹的张开由气体主导,最大宽度1.59 mm,作用时间长达4.5 ms;拉应变集中区先于裂纹出现,其形状决定了裂纹的走向和趋势,爆炸加载下断裂过程区长度为骨料粒径的8~9倍。  相似文献   
8.
为了研究冻融循环周次对陶粒混凝土动态力学性能的影响,对含有页岩陶粒体积分数为0%、15%、30%、45%的陶粒混凝土试样分别进行0、10、20、30和40次的冻融循环后SHPB动态压缩实验.实验表明:陶粒混凝土的动态力学性能随着冻融循环周次增加而弱化,动态压缩强度随着应变率的增加而增大,并给出了冻融循环周次对陶粒混凝土动态压缩强度的变化规律.  相似文献   
9.
商效瑀  郑山锁  徐强 《实验力学》2015,30(6):810-818
本文报导了对冻融循环作用下96个再生混凝土砖砌体抗剪试件进行的沿通缝抗剪试验。研究涉及冻融循环对再生混凝土砖砌体抗剪力学性能的影响,对比分析不同胶结材料试件的破坏形态及其抗剪强度,揭示冻融损伤对再生混凝土砖砌体抗剪强度的影响规律,并从微观角度探讨砂浆孔隙变化对砖砌体抗剪承载力的影响,建立再生混凝土砖砌体抗剪强度冻融损伤衰减模型。结果表明:砖砌体抗剪强度受冻融环境影响非常明显,其抗剪强度随冻融循环次数的增加而降低,降低的速度呈现出先慢后快的趋势;粉煤灰的加入有助于改善冻融环境下砖砌体的抗剪能力;对于石灰砂浆抗剪试件,初期的抗剪能力及冻融后的抗剪能力均下降;建立了考虑冻融损伤影响的砖砌体抗剪强度衰减模型,试验数据与计算结果吻合较好。  相似文献   
10.
对实腹式波形顶板-UHPC(超高性能混凝土)组合桥面板进行了改进, 采用空腹式结构建立波形钢板-UHPC组合桥面板有限元模型, 研究UHPC层厚度、波形钢板厚度、波形长度、下缘板宽度和波形高度等截面参数变化对组合桥面板受力特性的影响, 并确定其合理取值范围. 在此基础上, 通过理想点法对参数组合进行优化, 得到合理的参数匹配. 研究结果表明 相较于实腹式组合桥面板, 优化后的组合桥面板自重减小35%, 钢板弯折处应力减小16%; 相较于正交异性钢桥面板, 桥面板用钢量减小7%, 顶板与U肋连接位置应力减小47%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号