首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2927篇
  免费   251篇
  国内免费   931篇
化学   1719篇
晶体学   19篇
力学   737篇
综合类   116篇
数学   654篇
物理学   864篇
  2024年   2篇
  2023年   67篇
  2022年   84篇
  2021年   84篇
  2020年   83篇
  2019年   96篇
  2018年   34篇
  2017年   80篇
  2016年   85篇
  2015年   80篇
  2014年   221篇
  2013年   155篇
  2012年   151篇
  2011年   163篇
  2010年   158篇
  2009年   169篇
  2008年   223篇
  2007年   231篇
  2006年   212篇
  2005年   216篇
  2004年   183篇
  2003年   162篇
  2002年   152篇
  2001年   147篇
  2000年   82篇
  1999年   117篇
  1998年   79篇
  1997年   82篇
  1996年   86篇
  1995年   86篇
  1994年   81篇
  1993年   47篇
  1992年   61篇
  1991年   41篇
  1990年   44篇
  1989年   43篇
  1988年   13篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
排序方式: 共有4109条查询结果,搜索用时 15 毫秒
1.
四苯乙烯及其衍生物被广泛报道具有典型的聚集诱导发光(AIE)性能,在有机发光二极管、荧光离子探针、生物化学成像等诸多领域有着广阔的应用前景。以此为背景,可以将相关前沿议题转化为本科综合实验教学方案。本文针对现有的实验教学方案设计进行了探究和改进,在原有使用McMurry偶联反应制备四苯乙烯的实验方案基础上,利用生色团上不同取代基的推拉电子效应设计平行对照试验,合成溴代、甲氧基取代的四苯乙烯衍生物,实现了荧光发射光谱最大峰波长的显著移动,使得在紫外灯下即可观察到荧光从蓝色到黄绿色的变化。利用超声辅助合成的方法,成功将反应时间从原有的6–8 h压缩至2 h,使之更适应本科教学实验所需的时间空间。除光学性能表征外,本实验还综合了循环伏安法表征产物的能带结构。本实验针对原有方案进行了诸多改进,引入平行实验锻炼科学思维、别出心裁地引入超声辅助合成法,极大地缩短了反应时间,展现出较强的前沿性、绿色性和高效性。  相似文献   
2.
多环芳烃(PAHs)是持久性有机污染物中的一种,大部分具有较强的致癌、致畸和致突变性,对生态环境和人类健康易造成严重威胁。由于环境样品基质复杂且其中PAHs含量低,因此在仪器分析之前需要对环境样品进行必要的前处理。萃取材料的特性是决定大部分前处理技术萃取效率的关键。基于此,本文以低成本且富含较多官能团的吡咯(py)、2,3,3-三甲基吲哚(2,3,3-TMe@In)为单体,多孔氮化硼为掺杂物,采用电化学循环伏安法制备出多孔氮化硼掺杂聚吡咯-2,3,3-三甲基吲哚(Ppy/P2,3,3-TMe@In/BN)复合涂层,通过扫描电子显微镜、热稳定性分析、傅里叶红外光谱等手段对Ppy/P2,3,3-TMe@In/BN进行表征,结果表明:该涂层呈现出多孔、多褶皱的枝状结构,该结构有利于增加涂层的比表面积,从而实现对PAHs的大量富集;在320℃解吸温度下,涂层材料的色谱基线基本稳定,表明该涂层具有良好的热稳定性。将其修饰在不锈钢丝表面制成固相微萃取涂层,结合气相色谱-氢火焰离子化检测器,对影响萃取和分离萘(NAP)、苊(ANY)、芴(FLU)3种PAHs的条件进行优化,建立了用于以上3种PAHs...  相似文献   
3.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
4.
形状记忆合金(包括热致和磁致形状记忆合金)由于其特有的超弹性和形状记忆效应, 一直以来受到学者和工程界人士广泛关注, 且已有诸多成功的工程应用案例.为了进一步拓展该类合金的工程应用范围, 对其热--力和磁--力耦合循环变形和疲劳失效行为的宏微观实验观察和理论模型研究成果进行了综述. 总结了NiTi和NiTiX两类合金材料的温度诱发(即热致)的热--力耦合循环变形和疲劳失效行为研究的最新成果; 对以NiMnGa合金为代表的磁场诱发(即磁致)的磁--力耦合循环变形和疲劳失效行为的研究现状进行了评述; 提出并预测了未来的研究方向及发展趋势.   相似文献   
5.
6.
7.
在野外条件下开展了不同爆炸荷载条件下沉箱重力式码头模型毁伤效应实验,得到了沉箱重力式码头模型在1 kg TNT当量空中爆炸、水下爆炸以及结构内部爆炸后的毁伤模式,并针对不同毁伤模式给出了相应的抢修建议。实验结果表明:空中爆炸荷载下码头仅面板局部破坏形成爆坑;水下爆炸荷载下码头迎爆面及相近区域形成大量裂缝;结构内部爆炸荷载下码头仓格大变形破坏且中间面板被掀飞;从横向对比来看,在相同爆炸当量下空中爆炸荷载下码头毁伤程度最小,结构内部爆炸荷载下码头毁伤程度最大。  相似文献   
8.
针对中高温烟气驱动的有机朗肯循环发电系统进行多目标优化设计,以热效率和单位输出功率的系统总投资成本(PER)为多目标函数,选取蒸发温度和冷凝温度为决策变量,引入多目标蜻蜓算法(MODA)对工质苯的最佳循环参数进行寻优,采用一维向心透平效率模型取代固定透平等熵效率,并对工质进行敏感性分析。结果表明:透平效率随蒸发温度增加单调减少,随冷凝温度增加单调增加;在帕累托前沿中,随着热效率的增加,变透平效率寻优结果中PER迅速增加,定透平效率寻优结果中PER增加相对较平缓;热源温度越高,定透平效率寻优结果和变透平效率寻优结果差异越大。  相似文献   
9.
探讨数字减影血管成像(DSA)、计算机断层扫描血管成像(CTA)联合磁共振(MR)影像评估急性缺血性卒中(AIS)患者脑支循环及预后性关系。选取60例大脑中动脉M1段急性闭塞所致AIS患者为研究对象,根据DSA、CTA与MR影像对其脑侧支循环评估,比较患者基线资料、结局指标等,并分析预后性。结果发现:基于DSA、CTA与MR影像对AIS患者脑侧支循环评估结果一致性良好;3种影像模式下脑侧支循环良好组与不良组结局资料差异显著(P<0.05);多因素分析显示,FVH-ASPECTS评分、rLMC评分、ASITN/SIR分级量表均为AIS患者神经功能预后的独立影响因素。总之,DSA、CTA、MR影像对AIS患者脑侧支循环评估具有一致性,且FVH-ASPECTS评分、rLMC评分、ASITN/SIR分级量表均为AIS患者神经功能预后的独立影响因素。  相似文献   
10.
硫是生命必需的大量元素,硫循环失衡会造成生态的破坏。通过对硫循环、脱硫细菌的概念的阐述以及对生物脱硫作用机理的介绍,综合分析了脱硫菌脱除不同硫分的作用方式以及脱硫的不同途径,并初步探讨了其在自然界硫循环中的作用与意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号