首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   96篇
  国内免费   222篇
化学   601篇
晶体学   8篇
力学   184篇
综合类   13篇
数学   114篇
物理学   237篇
  2024年   2篇
  2023年   21篇
  2022年   30篇
  2021年   29篇
  2020年   21篇
  2019年   25篇
  2018年   13篇
  2017年   16篇
  2016年   29篇
  2015年   30篇
  2014年   70篇
  2013年   56篇
  2012年   71篇
  2011年   51篇
  2010年   59篇
  2009年   49篇
  2008年   70篇
  2007年   41篇
  2006年   64篇
  2005年   50篇
  2004年   35篇
  2003年   36篇
  2002年   24篇
  2001年   22篇
  2000年   22篇
  1999年   29篇
  1998年   29篇
  1997年   18篇
  1996年   21篇
  1995年   25篇
  1994年   30篇
  1993年   18篇
  1992年   16篇
  1991年   11篇
  1990年   9篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1982年   1篇
排序方式: 共有1157条查询结果,搜索用时 93 毫秒
1.
高温气冷堆燃料元件的基体石墨是一种多孔复合材料,是燃料元件的主要组成部分,其结构影响燃料元件的性能和裂变产物在燃料元件中的扩散。 本文利用压汞法表征基体石墨的孔隙结构,并讨论了基体石墨制备工艺中最大压制压强与热处理过程对孔隙结构的影响。 结果表明,基体石墨大孔孔径分布为6001900 nm,高温热处理使基体石墨的总孔隙率、中值孔径、大孔孔容均减小;基体石墨热处理样品的大孔孔容随最大压制压强的增加而呈线性减少,热处理过程单质Ag在石墨基体中的扩散速度与大孔孔容变化具有正相关性。  相似文献   
2.
酸性环境引发的岩石孔隙表面溶解增加了孔隙内水溶液的盐离子浓度,破坏了孔隙的表面结构.本文采用分子动力学模拟的方法研究了纳米级岩石孔隙内水溶液的流动特性,分析了盐离子浓度和孔隙表面结构对水流速度分布的影响及原因.研究结果表明:纳米级岩石孔隙内的水溶液流动符合泊肃叶流动特性,流速呈"抛物线"分布;随盐离子浓度增加,水溶液内部氢键网络变得更为致密,水黏度随其呈线性增长;水溶液中离子浓度越大,孔隙表面对水流动的阻力越大,最大流速越小,速度分布的"抛物线"曲率半径越大;岩石孔隙表面结构的破坏改变了流动表面的粗糙程度,增加了孔隙表面对H2O分子的吸引力.随表面结构破坏程度的增大,水溶液在近壁区域的密度增大,流速降低;当表面破坏程度达到50%时,水溶液在近壁区域出现了明显的负边界滑移现象.  相似文献   
3.
阐明了引入溶剂渗透因子的必要性,较详细地介绍了两种渗透因子及它们间的关系。  相似文献   
4.
循环孔隙水压下混凝土常规三轴压缩损伤破坏特性分析   总被引:3,自引:0,他引:3  
梁辉  彭刚  田为  黄仕超 《实验力学》2015,30(6):802-809
本文进行了孔隙水压不同循环次数(0次,10次,50次,100次和200次)以及不同应变速率下(10~(-5)/s,10~(-4)/s,10~(-3)/s和10~(-2)/s)混凝土常规三轴压缩试验,分析了混凝土峰值应变的变化规律、应力-应变曲线及损伤特性。结果表明:相同循环次数孔隙水压下,峰值应变随应变速率增加,整体呈现出增加的趋势;而相同应变速率下,峰值应变随孔隙水压循环次数的变化规律并不明显;在中低应变速率(10~(-5)~10~(-3)/s)下,混凝土的损伤变化受孔隙水压循环次数影响较大;当循环次数达到200次时,孔隙水压作用对混凝土产生较大的损伤。通过对循环孔隙水作用下混凝土动态损伤破坏机理的分析可知:混凝土的破坏过程实际上是内部裂纹不断形成、扩展、贯通,材料损伤不断产生、累积的过程;当损伤达到一定程度,混凝土发生宏观破坏,失去承载力。  相似文献   
5.
MXene是一种新型的二维过渡金属碳化物或碳氮化物,化学式为Mn+1Xn,M代表过渡金属,X代表碳或者氮.这种二维材料具有二维层状堆垛结构,层与层之间有大量纳米尺度的孔隙,层间孔隙的大小非常适合于吸附气体分子.通过选择MXene的种类以及控制MXene表面的吸附官能团,可以使MXene对不同气体的吸附能力显著不同.MXene的表面具有催化活性,可以将吸附的气体转化为另一种气体.本文分析MXene在制备方面的最新进展,总结刻蚀溶液对所制备材料结构的影响;分析了MXene的独特结构导致其在气体吸附以及转化方面的优良性能,介绍了MXene在气体吸附、催化转化等方面最新的理论和实验研究成果;总结了MXene用作高性能气体吸附转化材料需要解决的主要问题.  相似文献   
6.
张赛晖  王悦  柳开鹏  王捷 《化学进展》2019,31(7):969-979
聚电解质作为正渗透汲取液具有渗透压高、溶质反向渗透、易于回收等特点,符合理想正渗透汲取液的要求。此外,多种分离方法诸如纳滤、超滤和热处理可用于其回收,使得聚电解质型汲取液成为诸如氯化钠等的传统无机汲取液的理想代替物。近年来关于聚电解质型汲取液的研究日益增加,而聚电解质型汲取液较无机型汲取液有许多独特的性质,应对相关研究进展予以总结。本文以聚电解质的化学结构分类对其研究进展进行了概述。重点总结了不同种类聚电解质的分子量、渗透压、黏度等性质,以及正渗透过程的水通量及溶质反向渗透情况,同时还介绍了相应的正渗透机理。最后,探讨和总结了各类汲取液的特点,并展望了未来的研究方向。  相似文献   
7.
建立了以凝胶渗透色谱(GPC)和固相萃取(SPE)净化、气相色谱-质谱(GC-MS)法同时测定紫皮石斛中10种有机磷农药残留的方法。样品用乙腈超声提取,提取液经GPC去除类脂杂质和大分子物质,后经Envi-Carb/NH2固相萃取柱净化,选择离子(SIM)监测模式检测,外标法定量。在26min内10种农药得到很好的分离,农药残留量在0.02~0.5μg/mL,方法的线性良好,相关系数为0.997 3~0.999 9,农药加标浓度为0.05mg/kg和0.2mg/kg时,加标回收率在70.4%~115.8%,相对标准偏差在2.8%~9.6%,满足国家标准要求,检出限为0.005 2~0.011mg/kg。方法简便、快速、灵敏、准确,能够运用于石斛中多组分有机磷农药残留的定性和定量分析。  相似文献   
8.
张蓉  陈跃  郑培  代莹  李莎莎  贾颖异  谢然  王金花 《色谱》2023,41(2):178-186
建立了凝胶渗透色谱(GPC)-气相色谱-离子阱质谱同时检测桔梗原药和当归提取物中101种农药残留的分析方法。方法采用乙腈超声辅助提取桔梗原药和当归提取物,浓缩提取液至近干后用乙酸乙酯-环己烷(1∶1, v/v)复溶,采用凝胶渗透色谱法(选取40 cm长、内径20 mm的凝胶渗透色谱柱)对样品进行净化,弃去前段含脂类、色素等杂质的流出液,收集17~30 min洗脱液并旋转蒸发浓缩至近干,甲苯1 mL定容上机。选用DB-5MS毛细管色谱柱分离待测物,通过离子阱质谱实现对101种农药残留的高效检测。方法通过优化前处理条件和离子阱二级质谱参数,有效降低了复杂中药基质对待测化合物的干扰,最大限度提高了样品中农药的定量准确性和回收率,101种农药3水平添加的平均回收率为58.3%~108.9%,每个添加水平10次独立重复测定的相对标准偏差为0.4%~16.5%,检出限(LOD)范围为0.2~40.0 μg/kg,可满足当前韩国、日本、欧洲规定的最大残留限量(maximum residue limits, MRLs)要求。方法具有操作简单快速、灵敏度高、重复性好等特点,凝胶渗透色谱技术的应用克服了固相萃取小柱净化容量不足的弊端,离子阱技术的应用可以进一步排除共流出基体杂质的干扰,提高定量和定性的准确性,检测效果优于常用的气相色谱-质谱法,是对中药中同时分析多种农药残留检测方法的有益补充。  相似文献   
9.
弛豫时间是核磁共振研究中的一个重要参数,岩心孔隙介质流体的弛豫过程是自由流体弛豫机制、表面弛豫机制和流体的扩散弛豫机制共同作用的结果,它包含了丰富的孔隙和流体本身的信息. 弛豫时间和自扩散系数的测量及对弛豫时间的分析是核磁共振技术应用于岩心分析和石油勘测的重要内容.  相似文献   
10.
在河水与海水的交界处实现渗透能提取与捕获是解决未来能源危机的重要方式之一. 渗透能因为储量大, 容易获取以及绿色可持续的优势受到广泛关注. 反向电渗析技术是一种能够有效捕获渗透能的方法之一, 目前已经得到了深入的研究与发展. 离子交换膜是反向电渗析技术转换渗透能的关键组件, 其性能的优异程度决定能量转换效率的高低. 常见的膜材料主要是高分子聚合物及其改性化合物, 最近一些二维材料如石墨烯、 氧化石墨烯、 二硫化钼、 各种框架材料及其改性复合物因优异的选择性离子传输、 纳米级通道、 丰富的表面功能基团以及可修饰性成为捕获渗透能的重要膜材料. 本文综合评述了二维材料作为离子传输通道的类型以及相应的传输机理; 例举了二维材料及其复合物的设计方案和在渗透能转换方面的具体应用; 最后提出了目前二维材料在渗透能转换领域中面临的挑战以及未来的发展方向.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号